Biblio
the more (IoT) scales up with promises, the more security issues raise to the surface and must be tackled down. IoT is very vulnerable against DoS attacks. In this paper, we propose a hybrid design of signature-based IDS and anomaly-based IDS. The proposed hybrid design intends to enhance the intrusion detection and prevention systems (IDPS) to detect any DoS attack at early stages by classifying the network packets based on user behavior. Simulation results prove successful detection of DoS attack at earlier stages.
Signature-based Intrusion Detection Systems (IDS) are a key component in the cybersecurity defense strategy for any network being monitored. In order to improve the efficiency of the intrusion detection system and the corresponding mitigation action, it is important to address the problem of false alarms. In this paper, we present a comparative analysis of two approaches that consider the false alarm minimization and alarm correlation techniques. The output of this analysis provides us the elements to propose a parallelizable strategy designed to achieve better results in terms of precision, recall and alarm load reduction in the prioritization of alarms. We use Prelude SIEM as the event normalizer in order to process security events from heterogeneous sensors and to correlate them. The alarms are verified using the dynamic network context information collected from the vulnerability analysis, and they are prioritized using the HP Arsight priority formula. The results show an important reduction in the volume of alerts, together with a high precision in the identification of false alarms.