Visible to the public Biblio

Filters: Keyword is Cathode ray tubes  [Clear All Filters]
2021-02-01
Ogunseyi, T. B., Bo, T..  2020.  Fast Decryption Algorithm for Paillier Homomorphic Cryptosystem. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :803–806.
With the shift in storage paradigm, there is an increasing need for privacy of dataset and also for an encryption scheme that permits computation on encrypted data. Paillier cryptosystem is a good example of such a homomorphic encryption scheme. To improve the efficiency of the Paillier homomorphic encryption scheme in terms of its decryption speed and overall computational cost, we propose an improved decryption process. Specifically, the inclusion of a variable k to reduce the modular multiplicative arithmetic. The variable k is combined with the L function and CRT recombination method, to arrive at a fast and improved decryption process, showing the mathematical correctness of the decryption algorithm. Experimental results validate that our scheme is significantly efficient in its decryption speed.
2020-11-30
Guan, L., Lin, J., Ma, Z., Luo, B., Xia, L., Jing, J..  2018.  Copker: A Cryptographic Engine Against Cold-Boot Attacks. IEEE Transactions on Dependable and Secure Computing. 15:742–754.
Cryptosystems are essential for computer and communication security, e.g., RSA or ECDSA in PGP Email clients and AES in full disk encryption. In practice, the cryptographic keys are loaded and stored in RAM as plain-text, and therefore vulnerable to cold-boot attacks exploiting the remanence effect of RAM chips to directly read memory data. To tackle this problem, we propose Copker, a cryptographic engine that implements asymmetric cryptosystems entirely within the CPU, without storing any plain-text sensitive data in RAM. Copker supports the popular asymmetric cryptosystems (i.e., RSA and ECDSA), and deterministic random bit generators (DRBGs) used in ECDSA signing. In its active mode, Copker stores kilobytes of sensitive data, including the private key, the DRBG seed and intermediate states, only in on-chip CPU caches (and registers). Decryption/signing operations are performed without storing any sensitive information in RAM. In the suspend mode, Copker stores symmetrically-encrypted private keys and DRBG seeds in memory, while employs existing solutions to keep the key-encryption key securely in CPU registers. Hence, Copker releases the system resources in the suspend mode. We implement Copker with the support of multiple private keys. With security analyses and intensive experiments, we demonstrate that Copker provides cryptographic services that are secure against cold-boot attacks and introduce reasonable overhead.
2020-08-10
Mansour, Ahmad, Malik, Khalid M., Kaso, Niko.  2019.  AMOUN: Lightweight Scalable Multi-recipient Asymmetric Cryptographic Scheme. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0838–0846.
Securing multi-party communication is very challenging particularly in dynamic networks. Existing multi-recipient cryptographic schemes pose variety of limitations. These include: requiring trust among all recipients to make an agreement, high computational cost for both encryption and decryption, and additional communication overhead when group membership changes. To overcome these limitations, this paper introduces a novel multi-recipient asymmetric cryptographic scheme, AMOUN. This scheme enables the sender to possibly send different messages in one ciphertext to multiple recipients to better utilize network resources, while ensuring that each recipient only retrieves its own designated message. Security analysis demonstrates that proposed scheme is secure against well-known attacks. Evaluation results demonstrate that lightweight AMOUN outperforms RSA and Multi-RSA in terms of computational cost for both encryption and decryption. For a given prime size, in case of encryption, AMOUN achieves 86% and 98% lower average computational cost than RSA and Multi-RSA, respectively; while for decryption, it shows performance improvement of 98% compared to RSA and Multi-RSA.
2020-03-12
Dogruluk, Ertugrul, Costa, Antonio, Macedo, Joaquim.  2019.  A Detection and Defense Approach for Content Privacy in Named Data Network. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.

The Named Data Network (NDN) is a promising network paradigm for content distribution based on caching. However, it may put consumer privacy at risk, as the adversary may identify the content, the name and the signature (namely a certificate) through side-channel timing responses from the cache of the routers. The adversary may identify the content name and the consumer node by distinguishing between cached and un- cached contents. In order to mitigate the timing attack, effective countermeasure methods have been proposed by other authors, such as random caching, random freshness, and probabilistic caching. In this work, we have implemented a timing attack scenario to evaluate the efficiency of these countermeasures and to demonstrate how the adversary can be detected. For this goal, a brute force timing attack scenario based on a real topology was developed, which is the first brute force attack model applied in NDN. Results show that the adversary nodes can be effectively distinguished from other legitimate consumers during the attack period. It is also proposed a multi-level mechanism to detect an adversary node. Through this approach, the content distribution performance can be mitigated against the attack.