Visible to the public Biblio

Filters: Keyword is Virtual Prototype  [Clear All Filters]
2022-03-14
Tempel, Sören, Herdt, Vladimir, Drechsler, Rolf.  2021.  Towards Reliable Spatial Memory Safety for Embedded Software by Combining Checked C with Concolic Testing. 2021 58th ACM/IEEE Design Automation Conference (DAC). :667—672.
In this paper we propose to combine the safe C dialect Checked C with concolic testing to obtain an effective methodology for attaining safer C code. Checked C is a modern and backward compatible extension to the C programming language which provides facilities for writing memory-safe C code. We utilize incremental conversions of unsafe C software to Checked C. After each increment, we leverage concolic testing, an effective test generation technique, to support the conversion process by searching for newly introduced and existing bugs.Our RISC-V experiments using the RIOT Operating System (OS) demonstrate the effectiveness of our approach. We uncovered 4 previously unknown bugs and 3 bugs accidentally introduced through our conversion process.
2020-03-16
Goli, Mehran, Drechsler, Rolf.  2019.  Scalable Simulation-Based Verification of SystemC-Based Virtual Prototypes. 2019 22nd Euromicro Conference on Digital System Design (DSD). :522–529.
Virtual Prototypes (VPs) at the Electronic System Level (ESL) written in SystemC language using its Transaction Level Modeling (TLM) framework are increasingly adopted by the semiconductor industry. The main reason is that VPs are much earlier available, and their simulation is orders of magnitude faster in comparison to the hardware models implemented at lower levels of abstraction (e.g. RTL). This leads designers to use VPs as reference models for an early design verification. Hence, the correctness assurance of these reference models (VPs) is critical as undetected faults may propagate to less abstract levels in the design process, increasing the fixing cost and effort. In this paper, we propose a novel simulation-based verification approach to automatically validate the simulation behavior of a given SystemC VP against both the TLM-2.0 rules and its specifications (i.e. functional and timing behavior of communications in the VP). The scalability and the efficiency of the proposed approach are demonstrated using an extensive set of experiments including a real-word VP.