Biblio
At a time when all it takes to open a Twitter account is a mobile phone, the act of authenticating information encountered on social media becomes very complex, especially when we lack measures to verify digital identities in the first place. Because the platform supports anonymity, fake news generated by dubious sources have been observed to travel much faster and farther than real news. Hence, we need valid measures to identify authors of misinformation to avert these consequences. Researchers propose different authorship attribution techniques to approach this kind of problem. However, because tweets are made up of only 280 characters, finding a suitable authorship attribution technique is a challenge. This research aims to classify authors of tweets by comparing machine learning methods like logistic regression and naive Bayes. The processes of this application are fetching of tweets, pre-processing, feature extraction, and developing a machine learning model for classification. This paper illustrates the text classification for authorship process using machine learning techniques. In total, there were 46,895 tweets used as both training and testing data, and unique features specific to Twitter were extracted. Several steps were done in the pre-processing phase, including removal of short texts, removal of stop-words and punctuations, tokenizing and stemming of texts as well. This approach transforms the pre-processed data into a set of feature vector in Python. Logistic regression and naive Bayes algorithms were applied to the set of feature vectors for the training and testing of the classifier. The logistic regression based classifier gave the highest accuracy of 91.1% compared to the naive Bayes classifier with 89.8%.
Interchange of information through cell phones, Tabs and PDAs (Personal Digital Assistant) is the new trend in the era of digitization. In day-to-day activities, sensitive information through mobile phones is exchanged among the users. This sensitive information can be in the form of text messages, images, location, etc. The research on Android mobile applications was done at the MIT, and found that applications are leaking enormous amount of information to the third party servers. 73 percent of 55 Android applications were detected to leak personal information of the users [8]. Transmission of files securely on Android is a big issue. Therefore it is important to shield the privacy of user data on Android operating system. The main motive of this paper is to protect the privacy of data on Android Platform by allowing transmission of textual data, location, pictures in encrypted format. By doing so, we achieved intimacy and integrity of data.
The innovations in communication and computing technologies are changing the way we carry-out the tasks in our daily lives. These revolutionary and disrupting technologies are available to the users in various hardware form-factors like Smart Phones, Embedded Appliances, Configurable or Customizable add-on devices, etc. One such technology is Bluetooth [1], which enables the users to communicate and exchange various kinds of information like messages, audio, streaming music and file transfer in a Personal Area Network (PAN). Though it enables the user to carry-out these kinds of tasks without much effort and infrastructure requirements, they inherently bring with them the security and privacy concerns, which need to be addressed at different levels. In this paper, we present an application-layer framework, which provides strong mutual authentication of applications, data confidentiality and data integrity independent of underlying operating system. It can make use of the services of different Cryptographic Service Providers (CSP) on different operating systems and in different programming languages. This framework has been successfully implemented and tested on Android Operating System on one end (using Java language) and MS-Windows 7 Operating System on the other end (using ANSI C language), to prove the framework's reliability/compatibility across OS, Programming Language and CSP. This framework also satisfies the three essential requirements of Security, i.e. Confidentiality, Integrity and Availability, as per the NIST Guide to Bluetooth Security specification and enables the developers to suitably adapt it for different kinds of applications based on Bluetooth Technology.