Visible to the public Biblio

Filters: Keyword is Android smartphone  [Clear All Filters]
2018-02-21
Varol, N., Aydogan, A. F., Varol, A..  2017.  Cyber attacks targeting Android cellphones. 2017 5th International Symposium on Digital Forensic and Security (ISDFS). :1–5.

Mobile attack approaches can be categorized as Application Based Attacks and Frequency Based Attacks. Application based attacks are reviewed extensively in the literature. However, frequency based attacks to mobile phones are not experimented in detail. In this work, we have experimentally succeeded to attack an Android smartphone using a simple software based radio circuit. We have developed a software “Primary Mobile Hack Builder” to control Android operated cellphone as a distance. The SMS information and pictures in the cellphone can be obtained using this device. On the other hand, after launching a software into targeting cellphone, the camera of the cellphone can be controlled for taking pictures and downloading them into our computers. It was also possible to eavesdropping the conversation.

2015-05-04
Hong Li, Limin Sun, Haojin Zhu, Xiang Lu, Xiuzhen Cheng.  2014.  Achieving privacy preservation in WiFi fingerprint-based localization. INFOCOM, 2014 Proceedings IEEE. :2337-2345.

WiFi fingerprint-based localization is regarded as one of the most promising techniques for indoor localization. The location of a to-be-localized client is estimated by mapping the measured fingerprint (WiFi signal strengths) against a database owned by the localization service provider. A common concern of this approach that has never been addressed in literature is that it may leak the client's location information or disclose the service provider's data privacy. In this paper, we first analyze the privacy issues of WiFi fingerprint-based localization and then propose a Privacy-Preserving WiFi Fingerprint Localization scheme (PriWFL) that can protect both the client's location privacy and the service provider's data privacy. To reduce the computational overhead at the client side, we also present a performance enhancement algorithm by exploiting the indoor mobility prediction. Theoretical performance analysis and experimental study are carried out to validate the effectiveness of PriWFL. Our implementation of PriWFL in a typical Android smartphone and experimental results demonstrate the practicality and efficiency of PriWFL in real-world environments.