Visible to the public Biblio

Filters: Keyword is network security devices  [Clear All Filters]
2020-09-14
Du, Jia, Wang, Zhe, Yang, Junqiang, Song, Xiaofeng.  2019.  Research on Cognitive Linkage of Network Security Equipment. 2019 International Conference on Robots Intelligent System (ICRIS). :296–298.
To solve the problems of weak linkage ability and low intellectualization of strategy allocation in existing network security devices, a new method of cognitive linkage of network security equipment is proposed by learning from human brain. Firstly, the basic connotation and cognitive cycle of cognitive linkage are expounded. Secondly, the main functions of cognitive linkage are clarified. Finally, the cognitive linkage system model is constructed, and the information process flow of cognitive linkage is described. Cognitive linkage of network security equipment provides a new way to effectively enhance the overall protection capability of network security equipment.
2020-03-16
Zhou, Yaqiu, Ren, Yongmao, Zhou, Xu, Yang, Wanghong, Qin, Yifang.  2019.  A Scientific Data Traffic Scheduling Algorithm Based on Software-Defined Networking. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :62–67.
Compared to ordinary Internet applications, the transfer of scientific data flows often has higher requirements for network performance. The network security devices and systems often affect the efficiency of scientific data transfer. As a new type of network architecture, Software-defined Networking (SDN) decouples the data plane from the control plane. Its programmability allows users to customize the network transfer path and makes the network more intelligent. The Science DMZ model is a private network for scientific data flow transfer, which can improve performance under the premise of ensuring network security. This paper combines SDN with Science DMZ, designs and implements an SDN-based traffic scheduling algorithm considering the load of link. In addition to distinguishing scientific data flow from common data flow, the algorithm further distinguishes the scientific data flows of different applications and performs different traffic scheduling of scientific data for specific link states. Experiments results proved that the algorithm can effectively improve the transmission performance of scientific data flow.