Visible to the public Biblio

Filters: Keyword is private network  [Clear All Filters]
2023-06-09
Al-Amin, Mostafa, Khatun, Mirza Akhi, Nasir Uddin, Mohammed.  2022.  Development of Cyber Attack Model for Private Network. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :216—221.
Cyber Attack is the most challenging issue all over the world. Nowadays, Cyber-attacks are increasing on digital systems and organizations. Innovation and utilization of new digital technology, infrastructure, connectivity, and dependency on digital strategies are transforming day by day. The cyber threat scope has extended significantly. Currently, attackers are becoming more sophisticated, well-organized, and professional in generating malware programs in Python, C Programming, C++ Programming, Java, SQL, PHP, JavaScript, Ruby etc. Accurate attack modeling techniques provide cyber-attack planning, which can be applied quickly during a different ongoing cyber-attack. This paper aims to create a new cyber-attack model that will extend the existing model, which provides a better understanding of the network’s vulnerabilities.Moreover, It helps protect the company or private network infrastructure from future cyber-attacks. The final goal is to handle cyber-attacks efficacious manner using attack modeling techniques. Nowadays, many organizations, companies, authorities, industries, and individuals have faced cybercrime. To execute attacks using our model where honeypot, the firewall, DMZ and any other security are available in any environment.
2021-02-16
Liu, F., Eugenio, E., Jin, I. H., Bowen, C..  2020.  Differentially Private Generation of Social Networks via Exponential Random Graph Models. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1695—1700.
Many social networks contain sensitive relational information. One approach to protect the sensitive relational information while offering flexibility for social network research and analysis is to release synthetic social networks at a pre-specified privacy risk level, given the original observed network. We propose the DP-ERGM procedure that synthesizes networks that satisfy the differential privacy (DP) via the exponential random graph model (EGRM). We apply DP-ERGM to a college student friendship network and compare its original network information preservation in the generated private networks with two other approaches: differentially private DyadWise Randomized Response (DWRR) and Sanitization of the Conditional probability of Edge given Attribute classes (SCEA). The results suggest that DP-EGRM preserves the original information significantly better than DWRR and SCEA in both network statistics and inferences from ERGMs and latent space models. In addition, DP-ERGM satisfies the node DP, a stronger notion of privacy than the edge DP that DWRR and SCEA satisfy.
2020-03-16
Zhou, Yaqiu, Ren, Yongmao, Zhou, Xu, Yang, Wanghong, Qin, Yifang.  2019.  A Scientific Data Traffic Scheduling Algorithm Based on Software-Defined Networking. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :62–67.
Compared to ordinary Internet applications, the transfer of scientific data flows often has higher requirements for network performance. The network security devices and systems often affect the efficiency of scientific data transfer. As a new type of network architecture, Software-defined Networking (SDN) decouples the data plane from the control plane. Its programmability allows users to customize the network transfer path and makes the network more intelligent. The Science DMZ model is a private network for scientific data flow transfer, which can improve performance under the premise of ensuring network security. This paper combines SDN with Science DMZ, designs and implements an SDN-based traffic scheduling algorithm considering the load of link. In addition to distinguishing scientific data flow from common data flow, the algorithm further distinguishes the scientific data flows of different applications and performs different traffic scheduling of scientific data for specific link states. Experiments results proved that the algorithm can effectively improve the transmission performance of scientific data flow.