Visible to the public Biblio

Filters: Keyword is experimental design  [Clear All Filters]
2020-12-01
Haider, C., Chebotarev, Y., Tsiourti, C., Vincze, M..  2019.  Effects of Task-Dependent Robot Errors on Trust in Human-Robot Interaction: A Pilot Study. 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :172—177.

The growing diffusion of robotics in our daily life demands a deeper understanding of the mechanisms of trust in human-robot interaction. The performance of a robot is one of the most important factors influencing the trust of a human user. However, it is still unclear whether the circumstances in which a robot fails to affect the user's trust. We investigate how the perception of robot failures may influence the willingness of people to cooperate with the robot by following its instructions in a time-critical task. We conducted an experiment in which participants interacted with a robot that had previously failed in a related or an unrelated task. We hypothesized that users' observed and self-reported trust ratings would be higher in the condition where the robot has previously failed in an unrelated task. A proof-of-concept study with nine participants timidly confirms our hypothesis. At the same time, our results reveal some flaws in the design experimental, and encourage a future large scale study.

2020-03-18
Schwab, Stephen, Kline, Erik.  2019.  Cybersecurity Experimentation at Program Scale: Guidelines and Principles for Future Testbeds. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :94–102.
Cybersecurity Experimentation is often viewed narrowly in terms of a single technology or experiment. This paper reviews the experimentation life-cycle for two large scale research efforts that span multiple technologies. We identify salient aspects of each cybersecurity program, and capture guidelines based on eight years of experience. Extrapolating, we identify four principles for building future experimental infrastructure: 1) Reduce the cognitive burden on experimenters when designing and operating experiments. 2) Allow experimenters to encode their goals and constraints. 3) Provide flexibility in experimental design. 4) Provide multifaceted guidance to help experimenters produce high-quality experiments. By following these principles, future cybersecurity testbeds can enable significantly higher-quality experiments.