Visible to the public Biblio

Filters: Keyword is cyber insurance  [Clear All Filters]
2021-03-30
Ben-Yaakov, Y., Meyer, J., Wang, X., An, B..  2020.  User detection of threats with different security measures. 2020 IEEE International Conference on Human-Machine Systems (ICHMS). :1—6.

Cyber attacks and the associated costs made cybersecurity a vital part of any system. User behavior and decisions are still a major part in the coping with these risks. We developed a model of optimal investment and human decisions with security measures, given that the effectiveness of each measure depends partly on the performance of the others. In an online experiment, participants classified events as malicious or non-malicious, based on the value of an observed variable. Prior to making the decisions, they had invested in three security measures - a firewall, an IDS or insurance. In three experimental conditions, maximal investment in only one of the measures was optimal, while in a fourth condition, participants should not have invested in any of the measures. A previous paper presents the analysis of the investment decisions. This paper reports users' classifications of events when interacting with these systems. The use of security mechanisms helped participants gain higher scores. Participants benefited in particular from purchasing IDS and/or Cyber Insurance. Participants also showed higher sensitivity and compliance with the alerting system when they could benefit from investing in the IDS. Participants, however, did not adjust their behavior optimally to the security settings they had chosen. The results demonstrate the complex nature of risk-related behaviors and the need to consider human abilities and biases when designing cyber security systems.

2020-03-18
Yang, Yunxue, Ji, Guohua, Yang, Zhenqi, Xue, Shengjun.  2019.  Incentive Contract for Cybersecurity Information Sharing Considering Monitoring Signals. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :507–512.
Cyber insurance is a viable method for cyber risk transfer. However, the cyber insurance faces critical challenges, the most important of which is lack of statistical data. In this paper, we proposed an incentive model considering monitoring signals for cybersecurity information haring based on the principal-agent theory. We studied the effect of monitoring signals on increasing the rationality of the incentive contract and reducing moral hazard in the process of cybersecurity information sharing, and analyzed factors influencing the effectiveness of the incentive contract. We show that by introducing monitoring signals, the insurer can collect more information about the effort level of the insured, and encourage the insured to share cybersecurity information based on the information sharing output and monitoring signals of the effort level, which can not only reduce the blindness of incentive to the insured in the process of cybersecurity information sharing, but also reduce moral hazard.