Visible to the public Biblio

Filters: Keyword is malware authors  [Clear All Filters]
2020-10-29
Roseline, S. Abijah, Sasisri, A. D., Geetha, S., Balasubramanian, C..  2019.  Towards Efficient Malware Detection and Classification using Multilayered Random Forest Ensemble Technique. 2019 International Carnahan Conference on Security Technology (ICCST). :1—6.

The exponential growth rate of malware causes significant security concern in this digital era to computer users, private and government organizations. Traditional malware detection methods employ static and dynamic analysis, which are ineffective in identifying unknown malware. Malware authors develop new malware by using polymorphic and evasion techniques on existing malware and escape detection. Newly arriving malware are variants of existing malware and their patterns can be analyzed using the vision-based method. Malware patterns are visualized as images and their features are characterized. The alternative generation of class vectors and feature vectors using ensemble forests in multiple sequential layers is performed for classifying malware. This paper proposes a hybrid stacked multilayered ensembling approach which is robust and efficient than deep learning models. The proposed model outperforms the machine learning and deep learning models with an accuracy of 98.91%. The proposed system works well for small-scale and large-scale data since its adaptive nature of setting parameters (number of sequential levels) automatically. It is computationally efficient in terms of resources and time. The method uses very fewer hyper-parameters compared to deep neural networks.

2020-10-26
Black, Paul, Gondal, Iqbal, Vamplew, Peter, Lakhotia, Arun.  2019.  Evolved Similarity Techniques in Malware Analysis. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :404–410.

Malware authors are known to reuse existing code, this development process results in software evolution and a sequence of versions of a malware family containing functions that show a divergence from the initial version. This paper proposes the term evolved similarity to account for this gradual divergence of similarity across the version history of a malware family. While existing techniques are able to match functions in different versions of malware, these techniques work best when the version changes are relatively small. This paper introduces the concept of evolved similarity and presents automated Evolved Similarity Techniques (EST). EST differs from existing malware function similarity techniques by focusing on the identification of significantly modified functions in adjacent malware versions and may also be used to identify function similarity in malware samples that differ by several versions. The challenge in identifying evolved malware function pairs lies in identifying features that are relatively invariant across evolved code. The research in this paper makes use of the function call graph to establish these features and then demonstrates the use of these techniques using Zeus malware.

2020-08-14
Walla, Sebastian, Rossow, Christian.  2019.  MALPITY: Automatic Identification and Exploitation of Tarpit Vulnerabilities in Malware. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :590—605.
Law enforcement agencies regularly take down botnets as the ultimate defense against global malware operations. By arresting malware authors, and simultaneously infiltrating or shutting down a botnet's network infrastructures (such as C2 servers), defenders stop global threats and mitigate pending infections. In this paper, we propose malware tarpits, an orthogonal defense that does not require seizing botnet infrastructures, and at the same time can also be used to slow down malware spreading and infiltrate its monetization techniques. A tarpit is a network service that causes a client to stay busy with a network operation. Our work aims to automatically identify network operations used by malware that will block the malware either forever or for a significant amount of time. We describe how to non-intrusively exploit such tarpit vulnerabilities in malware to slow down or, ideally, even stop malware. Using dynamic malware analysis, we monitor how malware interacts with the POSIX and Winsock socket APIs. From this, we infer network operations that would have blocked when provided certain network inputs. We augment this vulnerability search with an automated generation of tarpits that exploit the identified vulnerabilities. We apply our prototype MALPITY on six popular malware families and discover 12 previously-unknown tarpit vulnerabilities, revealing that all families are susceptible to our defense. We demonstrate how to, e.g., halt Pushdo's DGA-based C2 communication, hinder SalityP2P peers from receiving commands or updates, and stop Bashlite's spreading engine.
2019-06-24
Qbeitah, M. A., Aldwairi, M..  2018.  Dynamic malware analysis of phishing emails. 2018 9th International Conference on Information and Communication Systems (ICICS). :18–24.

Malicious software or malware is one of the most significant dangers facing the Internet today. In the fight against malware, users depend on anti-malware and anti-virus products to proactively detect threats before damage is done. Those products rely on static signatures obtained through malware analysis. Unfortunately, malware authors are always one step ahead in avoiding detection. This research deals with dynamic malware analysis, which emphasizes on: how the malware will behave after execution, what changes to the operating system, registry and network communication take place. Dynamic analysis opens up the doors for automatic generation of anomaly and active signatures based on the new malware's behavior. The research includes a design of honeypot to capture new malware and a complete dynamic analysis laboratory setting. We propose a standard analysis methodology by preparing the analysis tools, then running the malicious samples in a controlled environment to investigate their behavior. We analyze 173 recent Phishing emails and 45 SPIM messages in search for potentially new malwares, we present two malware samples and their comprehensive dynamic analysis.

2015-05-04
Rastogi, V., Yan Chen, Xuxian Jiang.  2014.  Catch Me If You Can: Evaluating Android Anti-Malware Against Transformation Attacks. Information Forensics and Security, IEEE Transactions on. 9:99-108.

Mobile malware threats (e.g., on Android) have recently become a real concern. In this paper, we evaluate the state-of-the-art commercial mobile anti-malware products for Android and test how resistant they are against various common obfuscation techniques (even with known malware). Such an evaluation is important for not only measuring the available defense against mobile malware threats, but also proposing effective, next-generation solutions. We developed DroidChameleon, a systematic framework with various transformation techniques, and used it for our study. Our results on 10 popular commercial anti-malware applications for Android are worrisome: none of these tools is resistant against common malware transformation techniques. In addition, a majority of them can be trivially defeated by applying slight transformation over known malware with little effort for malware authors. Finally, in light of our results, we propose possible remedies for improving the current state of malware detection on mobile devices.