Visible to the public Biblio

Filters: Keyword is BHR  [Clear All Filters]
2023-02-17
Daoud, Luka, Rafla, Nader.  2022.  Energy-Efficient Black Hole Router Detection in Network-on-Chip. 2022 IEEE 35th International System-on-Chip Conference (SOCC). :1–6.
The Network-on-Chip (NoC) is the communication heart in Multiprocessors System-on-Chip (MPSoC). It offers an efficient and scalable interconnection platform, which makes it a focal point of potential security threats. Due to outsourcing design, the NoC can be infected with a malicious circuit, known as Hardware Trojan (HT), to leak sensitive information or degrade the system’s performance and function. An HT can form a security threat by consciously dropping packets from the NoC, structuring a Black Hole Router (BHR) attack. This paper presents an end-to-end secure interconnection network against the BHR attack. The proposed scheme is energy-efficient to detect the BHR in runtime with 1% and 2% average throughput and energy consumption overheads, respectively.
2020-03-23
Daoud, Luka, Rafla, Nader.  2019.  Analysis of Black Hole Router Attack in Network-on-Chip. 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS). :69–72.

Network-on-Chip (NoC) is the communication platform of the data among the processing cores in Multiprocessors System-on-Chip (MPSoC). NoC has become a target to security attacks and by outsourcing design, it can be infected with a malicious Hardware Trojan (HT) to degrades the system performance or leaves a back door for sensitive information leaking. In this paper, we proposed a HT model that applies a denial of service attack by deliberately discarding the data packets that are passing through the infected node creating a black hole in the NoC. It is known as Black Hole Router (BHR) attack. We studied the effect of the BHR attack on the NoC. The power and area overhead of the BHR are analyzed. We studied the effect of the locations of BHRs and their distribution in the network as well. The malicious nodes has very small area and power overhead, 1.98% and 0.74% respectively, with a very strong violent attack.