Visible to the public Biblio

Filters: Keyword is tactile sensors  [Clear All Filters]
2021-07-02
Yao, Xiaoyong, Pei, Yuwen, Wu, Pingdong, Huang, Man-ling.  2020.  Study on Integrative Control between the Stereoscopic Image and the Tactile Feedback in Augmented Reality. 2020 IEEE 3rd International Conference on Electronics and Communication Engineering (ICECE). :177—180.
The precise integrative control between the stereoscopic image and the tactile feedback is very essential in augmented reality[1]-[4]. In order to study this question, this paper will introduce a stereoscopic-imaging and tactile integrative augmented-reality system, and a stereoscopic-imaging and tactile integrative algorithm. The system includes a stereoscopic-imaging part and a string-based tactile part. The integrative algorithm is used to precisely control the interaction between the two parts. The results for testing the system and the algorithm demonstrate the system to be perfect through 5 testers' operation and will be presented in the last part of the paper.
2020-03-27
Lin, Nan, Zhang, Linrui, Chen, Yuxuan, Zhu, Yujun, Chen, Ruoxi, Wu, Peichen, Chen, Xiaoping.  2019.  Reinforcement Learning for Robotic Safe Control with Force Sensing. 2019 WRC Symposium on Advanced Robotics and Automation (WRC SARA). :148–153.

For the task with complicated manipulation in unstructured environments, traditional hand-coded methods are ineffective, while reinforcement learning can provide more general and useful policy. Although the reinforcement learning is able to obtain impressive results, its stability and reliability is hard to guarantee, which would cause the potential safety threats. Besides, the transfer from simulation to real-world also will lead in unpredictable situations. To enhance the safety and reliability of robots, we introduce the force and haptic perception into reinforcement learning. Force and tactual sensation play key roles in robotic dynamic control and human-robot interaction. We demonstrate that the force-based reinforcement learning method can be more adaptive to environment, especially in sim-to-real transfer. Experimental results show in object pushing task, our strategy is safer and more efficient in both simulation and real world, thus it holds prospects for a wide variety of robotic applications.