Visible to the public Biblio

Filters: Keyword is CUDA scientific applications  [Clear All Filters]
2020-03-30
Kim, Sejin, Oh, Jisun, Kim, Yoonhee.  2019.  Data Provenance for Experiment Management of Scientific Applications on GPU. 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–4.
Graphics Processing Units (GPUs) are getting popularly utilized for multi-purpose applications in order to enhance highly performed parallelism of computation. As memory virtualization methods in GPU nodes are not efficiently provided to deal with diverse memory usage patterns for these applications, the success of their execution depends on exclusive and limited use of physical memory in GPU environments. Therefore, it is important to predict a pattern change of GPU memory usage during runtime execution of an application. Data provenance extracted from application characteristics, GPU runtime environments, input, and execution patterns from runtime monitoring, is defined for supporting application management to set runtime configuration and predict an experimental result, and utilize resource with co-located applications. In this paper, we define data provenance of an application on GPUs and manage data by profiling the execution of CUDA scientific applications. Data provenance management helps to predict execution patterns of other similar experiments and plan efficient resource configuration.