Biblio
The Internet of Things (IoT) has become ubiquitous in our daily life as billions of devices are connected through the Internet infrastructure. However, the rapid increase of IoT devices brings many non-traditional challenges for system design and implementation. In this paper, we focus on the hardware security vulnerabilities and ultra-low power design requirement of IoT devices. We briefly survey the existing design methods to address these issues. Then we propose an approximate computing based information hiding approach that provides security with low power. We demonstrate that this security primitive can be applied for security applications such as digital watermarking, fingerprinting, device authentication, and lightweight encryption.
Wireless sensor networks have been widely utilized in many applications such as environment monitoring and controlling. Appropriate sensor deployment scheme to achieve the maximal coverage is crucial for effectiveness of sensor network. In this paper, we study coverage optimization problem with hopping sensors. Although similar problem has been investigated when each mobile sensor has continuous dynamics, the problem is different for hopping sensor which has discrete and constraint dynamics. Based on the characteristics of hopping, we obtain dynamics equation of hopping sensors. Then we propose an enhanced virtual force algorithm as a deployment scheme to improve the coverage. A combination of attractive and repulsive forces generated by Voronoi neighbor sensors, obstacles and the centroid of local Voronoi cell is used to determine the motion paths for hopping sensors. Furthermore, a timer is designed to adjust the movement sequence of sensors, such that unnecessary movements can be reduced. Simulation results show that optimal coverage can be accomplished by hopping sensors in an energy efficient manner.
The main challenge of ultra-reliable machine-to-machine (M2M) control applications is to meet the stringent timing and reliability requirements of control systems, despite the adverse properties of wireless communication for delay and packet errors, and limited battery resources of the sensor nodes. Since the transmission delay and energy consumption of a sensor node are determined by the transmission power and rate of that sensor node and the concurrently transmitting nodes, the transmission schedule should be optimized jointly with the transmission power and rate of the sensor nodes. Previously, it has been shown that the optimization of power control and rate adaptation for each node subset can be separately formulated, solved and then used in the scheduling algorithm in the optimal solution of the joint optimization of power control, rate adaptation and scheduling problem. However, the power control and rate adaptation problem has been only formulated and solved for continuous rate transmission model, in which Shannon's capacity formulation for an Additive White Gaussian Noise (AWGN) wireless channel is used in the calculation of the maximum achievable rate as a function of Signal-to-Interference-plus-Noise Ratio (SINR). In this paper, we formulate the power control and rate adaptation problem with the objective of minimizing the time required for the concurrent transmission of a set of sensor nodes while satisfying their transmission delay, reliability and energy consumption requirements based on the more realistic discrete rate transmission model, in which only a finite set of transmit rates are supported. We propose a polynomial time algorithm to solve this problem and prove the optimality of the proposed algorithm. We then combine it with the previously proposed scheduling algorithms and demonstrate its close to optimal performance via extensive simulations.
With the rapid development of Wireless Sensor Networks (WSNs), besides the energy efficient, Quality of Service (QoS) supported and the validity of packet transmission should be considered under some circumstances. In this paper, according to summing up LEACH protocol's advantages and defects, combining with trust evaluation mechanism, energy and QoS control, a trust-based QoS routing algorithm is put forward. Firstly, energy control and coverage scale are adopted to keep load balance in the phase of cluster head selection. Secondly, trust evaluation mechanism is designed to increase the credibility of the network in the stage of node clusting. Finally, in the period of information transmission, verification and ACK mechanism also put to guarantee validity of data transmission. In this paper, it proposes the improved protocol. The improved protocol can not only prolong nodes' life expectancy, but also increase the credibility of information transmission and reduce the packet loss. Compared to typical routing algorithms in sensor networks, this new algorithm has better performance.
Cell discontinuous transmission (DTX) is a new feature that enables sleep mode operations at base station (BS) side during the transmission time intervals when there is no traffic. In this letter, we analyze the maximum achievable energy saving of the cell DTX. We incorporate the cell DTX with a clean-slate network deployment and obtain optimal BS density for lowest energy consumption satisfying a certain quality of service requirement considering daily traffic variation. The numerical result indicates that the fast traffic adaptation capability of cell DTX favors dense network deployment with lightly loaded cells, which brings about considerable improvement in energy saving.
Wireless Sensor Networks (WSNs) are deployed to monitor the assets (endangered species) and report the locations of these assets to the Base Station (BS) also known as Sink. The hunter (adversary) attacks the network at one or two hops away from the Sink, eavesdrops the wireless communication links and traces back to the location of the asset to capture them. The existing solutions proposed to preserve the privacy of the assets lack in energy efficiency as they rely on random walk routing technique and fake packet injection technique so as to obfuscate the hunter from locating the assets. In this paper we present an energy efficient privacy preserved routing algorithm where the event (i.e., asset) detected nodes called as source nodes report the events' location information to the Base Station using phantom source (also known as phantom node) concept and a-angle anonymity concept. Routing is done using existing greedy routing protocol. Comparison through simulations shows that our solution reduces the energy consumption and delay while maintaining the same level of privacy as that of two existing popular techniques.