Visible to the public Biblio

Filters: Keyword is phantom source  [Clear All Filters]
2020-10-26
Bai, Leqiang, Li, Guoku.  2018.  Location Privacy Protection of WSN Based on Network Partition and Angle. 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). :1254–1260.
For the phantom routing algorithm, phantom source nodes are concentrated near the real source node, and for the angle based phantom routing algorithm, phantom source nodes focus on some areas, and the existing source location privacy protection algorithm has low security cycle, a source location privacy protection algorithm of wireless sensor networks based on angle and network partition is proposed. The algorithm selects the next hop node on forwarding path according to the angle relationship between neighbors, and ensures that phantom source nodes are far away from the real source node and have the diversity of geographic location through network partition. Simulation results show that, compared with the existing source location privacy protection algorithm, this algorithm can induce attackers to deviate from the real path, and increase security cycle.
2015-05-04
Manjula, R., Datta, R..  2014.  An energy-efficient routing technique for privacy preservation of assets monitored with WSN. Students' Technology Symposium (TechSym), 2014 IEEE. :325-330.

Wireless Sensor Networks (WSNs) are deployed to monitor the assets (endangered species) and report the locations of these assets to the Base Station (BS) also known as Sink. The hunter (adversary) attacks the network at one or two hops away from the Sink, eavesdrops the wireless communication links and traces back to the location of the asset to capture them. The existing solutions proposed to preserve the privacy of the assets lack in energy efficiency as they rely on random walk routing technique and fake packet injection technique so as to obfuscate the hunter from locating the assets. In this paper we present an energy efficient privacy preserved routing algorithm where the event (i.e., asset) detected nodes called as source nodes report the events' location information to the Base Station using phantom source (also known as phantom node) concept and a-angle anonymity concept. Routing is done using existing greedy routing protocol. Comparison through simulations shows that our solution reduces the energy consumption and delay while maintaining the same level of privacy as that of two existing popular techniques.