Visible to the public Biblio

Filters: Keyword is cover images  [Clear All Filters]
2021-02-15
Bisht, K., Deshmukh, M..  2020.  Encryption algorithm based on knight’s tour and n-neighbourhood addition. 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN). :31–36.
This paper presents a new algorithm for image encryption by extending the Knight's Tour Problem (KTP). The idea behind the proposed algorithm is to generate a Knight Tour (KT) matrix (m,n) and then divide the image according to the size of knight tour matrix into several sub matrices. Finally, apply n-neighborhood addition modulo encryption algorithm according to the solution of KT matrix over each m × n partition of the image. The proposed algorithm provides image encryption without using the cover images. Results obtained from experiments have shown that the proposed algorithm is efficient, simple and does not disclose any information from encrypted image.
2020-03-30
Huang, Jinjing, Cheng, Shaoyin, Lou, Songhao, Jiang, Fan.  2019.  Image steganography using texture features and GANs. 2019 International Joint Conference on Neural Networks (IJCNN). :1–8.
As steganography is the main practice of hidden writing, many deep neural networks are proposed to conceal secret information into images, whose invisibility and security are unsatisfactory. In this paper, we present an encoder-decoder framework with an adversarial discriminator to conceal messages or images into natural images. The message is embedded into QR code first which significantly improves the fault-tolerance. Considering the mean squared error (MSE) is not conducive to perfectly learn the invisible perturbations of cover images, we introduce a texture-based loss that is helpful to hide information into the complex texture regions of an image, improving the invisibility of hidden information. In addition, we design a truncated layer to cope with stego image distortions caused by data type conversion and a moment layer to train our model with varisized images. Finally, our experiments demonstrate that the proposed model improves the security and visual quality of stego images.