Biblio
Filters: Keyword is quantum cryptography methods [Clear All Filters]
Abstract Model of Eavesdropper and Overview on Attacks in Quantum Cryptography Systems. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 1:399–405.
.
2019. In today's world, it's almost impossible to find a sphere of human life in which information technologies would not be used. On the one hand, it simplifies human life - virtually everyone carries a mini-computer in his pocket and it allows to perform many operations, that took a lot of time, in minutes. In addition, IT has simplified and promptly developed areas such as medicine, banking, document circulation, military, and many other infrastructures of the state. Nevertheless, even today, privacy remains a major problem in many information transactions. One of the most important directions for ensuring the information confidentiality in open communication networks has been and remains its protection by cryptographic methods. Although it is known that traditional cryptography methods give reasons to doubt in their reliability, quantum cryptography has proven itself as a more reliable information security technology. As far is it quite new direction there is no sufficiently complete classification of attacks on quantum cryptography methods, in view of this new extended classification of attacks on quantum protocols and quantum cryptosystems is proposed in this work. Classification takes into account the newest attacks (which use devices loopholes) on quantum key distribution equipment. These attacks have been named \textbackslashtextless; \textbackslashtextless; quantum hacking\textbackslashtextgreater\textbackslashtextgreater. Such classification may be useful for choosing commercially available quantum key distribution system. Also abstract model of eavesdropper in quantum systems was created and it allows to determine a set of various nature measures that need to be further implemented to provide reliable security with the help of specific quantum systems.