Visible to the public Biblio

Filters: Keyword is quantum memory  [Clear All Filters]
2022-12-20
Hasan, Syed Rakib, Chowdhury, Mostafa Zaman, Saiam, Md..  2022.  A New Quantum Visible Light Communication for Future Wireless Network Systems. 2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE). :1–4.
In the near future, the high data rate challenge would not be possible by using the radio frequency (RF) only. As the user will increase, the network traffic will increase proportionally. Visible light communication (VLC) is a good solution to support huge number of indoor users. VLC has high data rate over RF communication. The way internet users are increasing, we have to think over VLC technology. Not only the data rate is a concern but also its security, cost, and reliability have to be considered for a good communication network. Quantum technology makes a great impact on communication and computing in both areas. Quantum communication technology has the ability to support better channel capacity, higher security, and lower latency. This paper combines the quantum technology over the existing VLC and compares the performance between quantum visible light communication performance (QVLC) over the existing VLC system. Research findings clearly show that the performance of QVLC is better than the existing VLC system.
2020-03-30
Vasiliu, Yevhen, Limar, Igor, Gancarczyk, Tomasz, Karpinski, Mikolaj.  2019.  New Quantum Secret Sharing Protocol Using Entangled Qutrits. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 1:324–329.
A new quantum secret sharing protocol based on the ping-pong protocol of quantum secure direct communication is proposed. The pairs of entangled qutrits are used in protocol, which allows an increase in the information capacity compared with protocols based on entangled qubits. The detection of channel eavesdropping used in the protocol is being implemented in random moments of time, thereby it is possible do not use the significant amount of quantum memory. The security of the proposed protocol to attacks is considered. A method for additional amplification of the security to an eavesdropping attack in communication channels for the developed protocol is proposed.