Visible to the public Biblio

Filters: Keyword is conflicts  [Clear All Filters]
2022-04-18
Vijayalakshmi, K., Jayalakshmi, V..  2021.  Identifying Considerable Anomalies and Conflicts in ABAC Security Policies. 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS). :1273–1280.
Nowadays security of shared resources and big data is an important and critical issue. With the growth of information technology and social networks, data and resources are shared in the distributed environment such as cloud and fog computing. Various access control models protect the shared resources from unauthorized users or malicious intruders. Despite the attribute-based access control model that meets the complex security requirement of todays' new computing technologies, considerable anomalies and conflicts in ABAC policies affect the efficiency of the security system. One important and toughest task is policy validation thus to detect and eliminate anomalies and conflicts in policies. Though the previous researches identified anomalies, failed to detect and analyze all considerable anomalies that results vulnerable to hacks and attacks. The primary objective of this paper is to study and analyze the possible anomalies and conflicts in ABAC security policies. We have discussed and analyzed considerable conflicts in policies based on previous researches. This paper can provide a detailed review of anomalies and conflicts in security policies.
2020-04-03
Ayache, Meryeme, Khoumsi, Ahmed, Erradi, Mohammed.  2019.  Managing Security Policies within Cloud Environments Using Aspect-Oriented State Machines. 2019 International Conference on Advanced Communication Technologies and Networking (CommNet). :1—10.

Cloud Computing is the most suitable environment for the collaboration of multiple organizations via its multi-tenancy architecture. However, due to the distributed management of policies within these collaborations, they may contain several anomalies, such as conflicts and redundancies, which may lead to both safety and availability problems. On the other hand, current cloud computing solutions do not offer verification tools to manage access control policies. In this paper, we propose a cloud policy verification service (CPVS), that facilitates to users the management of there own security policies within Openstack cloud environment. Specifically, the proposed cloud service offers a policy verification approach to dynamically choose the adequate policy using Aspect-Oriented Finite State Machines (AO-FSM), where pointcuts and advices are used to adopt Domain-Specific Language (DSL) state machine artifacts. The pointcuts define states' patterns representing anomalies (e.g., conflicts) that may occur in a security policy, while the advices define the actions applied at the selected pointcuts to remove the anomalies. In order to demonstrate the efficiency of our approach, we provide time and space complexities. The approach was implemented as middleware service within Openstack cloud environment. The implementation results show that the middleware can detect and resolve different policy anomalies in an efficient manner.