Biblio
Privacy preservation is a challenging task with the huge amount of data that are available in social media. The data those are stored in the distributed environment or in cloud environment need to ensure confidentiality to data. In addition, representing the voluminous data is graph will be convenient to perform keyword search. The proposed work initially reads the data corresponding to social media and converts that into a graph. In order to prevent the data from the active attacks Advanced Encryption Standard algorithm is used to perform graph encryption. Later, search operation is done using two algorithms: kNK keyword search algorithm and top k nearest keyword search algorithm. The first scheme is used to fetch all the data corresponding to the keyword. The second scheme is used to fetch the nearest neighbor. This scheme increases the efficiency of the search process. Here shortest path algorithm is used to find the minimum distance. Now, based on the minimum value the results are produced. The proposed algorithm shows high performance for graph generation and searching and moderate performance for graph encryption.
Wireless Sensor Network has a wide range of applications including environmental monitoring and data gathering in hostile environments. This kind of network is easily leaned to different external and internal attacks because of its open nature. Sink node is a receiving and collection point that gathers data from the sensor nodes present in the network. Thus, it forms bridge between sensors and the user. A complete sensor network can be made useless if this sink node is attacked. To ensure continuous usage, it is very important to preserve the location privacy of sink nodes. A very good approach for securing location privacy of sink node is proposed in this paper. The proposed scheme tries to modify the traditional Blast technique by adding shortest path algorithm and an efficient clustering mechanism in the network and tries to minimize the energy consumption and packet delay.