Visible to the public Biblio

Filters: Keyword is technological advancements  [Clear All Filters]
2020-10-19
Hasan, Khondokar Fida, Kaur, Tarandeep, Hasan, Md. Mhedi, Feng, Yanming.  2019.  Cognitive Internet of Vehicles: Motivation, Layered Architecture and Security Issues. 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI). :1–6.
Over the past few years, we have experienced great technological advancements in the information and communication field, which has significantly contributed to reshaping the Intelligent Transportation System (ITS) concept. Evolving from the platform of a collection of sensors aiming to collect data, the data exchanged paradigm among vehicles is shifted from the local network to the cloud. With the introduction of cloud and edge computing along with ubiquitous 5G mobile network, it is expected to see the role of Artificial Intelligence (AI) in data processing and smart decision imminent. So as to fully understand the future automobile scenario in this verge of industrial revolution 4.0, it is necessary first of all to get a clear understanding of the cutting-edge technologies that going to take place in the automotive ecosystem so that the cyber-physical impact on transportation system can be measured. CIoV, which is abbreviated from Cognitive Internet of Vehicle, is one of the recently proposed architectures of the technological evolution in transportation, and it has amassed great attention. It introduces cloud-based artificial intelligence and machine learning into transportation system. What are the future expectations of CIoV? To fully contemplate this architecture's future potentials, and milestones set to achieve, it is crucial to understand all the technologies that leaned into it. Also, the security issues to meet the security requirements of its practical implementation. Aiming to that, this paper presents the evolution of CIoV along with the layer abstractions to outline the distinctive functional parts of the proposed architecture. It also gives an investigation of the prime security and privacy issues associated with technological evolution to take measures.
2020-04-06
Ahmadi, S. Sareh, Rashad, Sherif, Elgazzar, Heba.  2019.  Machine Learning Models for Activity Recognition and Authentication of Smartphone Users. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0561–0567.
Technological advancements have made smartphones to provide wide range of applications that enable users to perform many of their tasks easily and conveniently, anytime and anywhere. For this reason, many users are tend to store their private data in their smart phones. Since conventional methods for security of smartphones, such as passwords, personal identification numbers, and pattern locks are prone to many attacks, this research paper proposes a novel method for authenticating smartphone users based on performing seven different daily physical activity as behavioral biometrics, using smartphone embedded sensor data. This authentication scheme builds a machine learning model which recognizes users by performing those daily activities. Experimental results demonstrate the effectiveness of the proposed framework.