Visible to the public Biblio

Filters: Keyword is Threat intelligence sharing  [Clear All Filters]
2021-02-10
Purohit, S., Calyam, P., Wang, S., Yempalla, R., Varghese, J..  2020.  DefenseChain: Consortium Blockchain for Cyber Threat Intelligence Sharing and Defense. 2020 2nd Conference on Blockchain Research Applications for Innovative Networks and Services (BRAINS). :112—119.
Cloud-hosted applications are prone to targeted attacks such as DDoS, advanced persistent threats, cryptojacking which threaten service availability. Recently, methods for threat information sharing and defense require co-operation and trust between multiple domains/entities. There is a need for mechanisms that establish distributed trust to allow for such a collective defense. In this paper, we present a novel threat intelligence sharing and defense system, namely “DefenseChain”, to allow organizations to have incentive-based and trustworthy co-operation to mitigate the impact of cyber attacks. Our solution approach features a consortium Blockchain platform to obtain threat data and select suitable peers to help with attack detection and mitigation. We propose an economic model for creation and sustenance of the consortium with peers through a reputation estimation scheme that uses `Quality of Detection' and `Quality of Mitigation' metrics. Our evaluation experiments with DefenseChain implementation are performed on an Open Cloud testbed with Hyperledger Composer and in a simulation environment. Our results show that the DefenseChain system overall performs better than state-of-the-art decision making schemes in choosing the most appropriate detector and mitigator peers. In addition, we show that our DefenseChain achieves better performance trade-offs in terms of metrics such as detection time, mitigation time and attack reoccurence rate. Lastly, our validation results demonstrate that our DefenseChain can effectively identify rational/irrational service providers.
2020-04-06
Wu, Yichang, Qiao, Yuansong, Ye, Yuhang, Lee, Brian.  2019.  Towards Improved Trust in Threat Intelligence Sharing using Blockchain and Trusted Computing. 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :474–481.
Threat intelligence sharing is posited as an important aid to help counter cybersecurity attacks and a number of threat intelligence sharing communities exist. There is a general consensus that many challenges remain to be overcome to achieve fully effective sharing, including concerns about privacy, negative publicity, policy/legal issues and expense of sharing, amongst others. One recent trend undertaken to address this is the use of decentralized blockchain based sharing architectures. However while these platforms can help increase sharing effectiveness they do not fully address all of the above challenges. In particular, issues around trust are not satisfactorily solved by current approaches. In this paper, we describe a novel trust enhancement framework -TITAN- for decentralized sharing based on the use of P2P reputation systems to address open trust issues. Our design uses blockchain and Trusted Execution Environment technologies to ensure security, integrity and privacy in the operation of the threat intelligence sharing reputation system.
Li, Jiabin, Xue, Zhi.  2019.  Distributed Threat Intelligence Sharing System: A New Sight of P2P Botnet Detection. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–6.

Botnet has been evolving over time since its birth. Nowadays, P2P (Peer-to-Peer) botnet has become a main threat to cyberspace security, owing to its strong concealment and easy expansibility. In order to effectively detect P2P botnet, researchers often focus on the analysis of network traffic. For the sake of enriching P2P botnet detection methods, the author puts forward a new sight of applying distributed threat intelligence sharing system to P2P botnet detection. This system aims to fight against distributed botnet by using distributed methods itself, and then to detect botnet in real time. To fulfill the goal of botnet detection, there are 3 important parts: the threat intelligence sharing and evaluating system, the BAV quantitative TI model, and the AHP and HMM based analysis algorithm. Theoretically, this method should work on different types of distributed cyber threat besides P2P botnet.