Visible to the public Biblio

Filters: Keyword is e-government applications  [Clear All Filters]
2020-10-16
Liu, Liping, Piao, Chunhui, Jiang, Xuehong, Zheng, Lijuan.  2018.  Research on Governmental Data Sharing Based on Local Differential Privacy Approach. 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE). :39—45.

With the construction and implementation of the government information resources sharing mechanism, the protection of citizens' privacy has become a vital issue for government departments and the public. This paper discusses the risk of citizens' privacy disclosure related to data sharing among government departments, and analyzes the current major privacy protection models for data sharing. Aiming at the issues of low efficiency and low reliability in existing e-government applications, a statistical data sharing framework among governmental departments based on local differential privacy and blockchain is established, and its applicability and advantages are illustrated through example analysis. The characteristics of the private blockchain enhance the security, credibility and responsiveness of information sharing between departments. Local differential privacy provides better usability and security for sharing statistics. It not only keeps statistics available, but also protects the privacy of citizens.

2020-04-06
Chen, Yuxiang, Dong, Guishan, Bai, Jian, Hao, Yao, Li, Feng, Peng, Haiyang.  2019.  Trust Enhancement Scheme for Cross Domain Authentication of PKI System. 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :103–110.
Public Key Infrastructure (PKI) has been popularized in many scenarios such as e-government applications, enterprises, etc. Due to the construction of PKI system of various regions and departments, there formed a lot of isolated PKI management domains, cross-domain authentication has become a problem that cannot ignored, which also has some traditional solutions such as cross-authentication, trust list, etc. However, some issues still exist, which hinder the popularity of unified trust services. For example, lack of unified cross domain standard, the update period of Certificate Revocation List (CRL) is too long, which affects the security of cross-domain authentication. In this paper, we proposed a trust transferring model by using blockchain consensus instead of traditional trusted third party for e-government applications. We exploit how to solve the unified trust service problem of PKI at the national level through consensus and transfer some CA management functions to the blockchain. And we prove the scheme's feasibility from engineering perspective. Besides, the scheme has enough scalability to satisfy trust transfer requirements of multiple PKI systems. Meanwhile, the security and efficiency are also guaranteed compared with traditional solutions.