Visible to the public Biblio

Filters: Keyword is malware detection efficiency  [Clear All Filters]
2022-08-12
Ajiri, Victor, Butakov, Sergey, Zavarsky, Pavol.  2020.  Detection Efficiency of Static Analyzers against Obfuscated Android Malware. 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :231–234.
Mobile antivirus technologies incorporate static analysis which involves the analysis of programs without its execution. This process relies on pattern matching against a signature repository to identify malware, which can be easily tricked by transformation techniques such as obfuscation. Obfuscation as an evasion technique renders character strings disguised and incomprehensive, to prevent tampering and reengineering, which poses to be a valuable technique malware developers adopt to evade detection. This paper attempts to study the detection efficiency of static analyzers against obfuscated Android malware. This study is the first step in a larger project attempting to improve the efficiency of malware detectors.
2020-04-06
Chen, Chia-Mei, Wang, Shi-Hao, Wen, Dan-Wei, Lai, Gu-Hsin, Sun, Ming-Kung.  2019.  Applying Convolutional Neural Network for Malware Detection. 2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST). :1—5.

Failure to detect malware at its very inception leaves room for it to post significant threat and cost to cyber security for not only individuals, organizations but also the society and nation. However, the rapid growth in volume and diversity of malware renders conventional detection techniques that utilize feature extraction and comparison insufficient, making it very difficult for well-trained network administrators to identify malware, not to mention regular users of internet. Challenges in malware detection is exacerbated since complexity in the type and structure also increase dramatically in these years to include source code, binary file, shell script, Perl script, instructions, settings and others. Such increased complexity offers a premium on misjudgment. In order to increase malware detection efficiency and accuracy under large volume and multiple types of malware, this research adopts Convolutional Neural Networks (CNN), one of the most successful deep learning techniques. The experiment shows an accuracy rate of over 90% in identifying malicious and benign codes. The experiment also presents that CNN is effective with detecting source code and binary code, it can further identify malware that is embedded into benign code, leaving malware no place to hide. This research proposes a feasible solution for network administrators to efficiently identify malware at the very inception in the severe network environment nowadays, so that information technology personnel can take protective actions in a timely manner and make preparations for potential follow-up cyber-attacks.