Visible to the public Biblio

Filters: Keyword is self-interference cancellation  [Clear All Filters]
2020-12-21
Qiao, G., Zhao, Y., Liu, S., Ahmed, N..  2020.  The Effect of Acoustic-Shell Coupling on Near-End Self-Interference Signal of In-Band Full-Duplex Underwater Acoustic Communication Modem. 2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :606–610.
In-Band Full-Duplex (IBFD) Underwater Acoustic (UWA) communication technology plays a major role in enhancing the performance of Underwater acoustic sensor networks (UWSN). Self-Interference (SI) is one of the main inherent challenges affecting the performance of IBFD UWA communication. To reconstruct the SI signal and counteract the SI effect, this is important to estimate the short range channel through which the SI signal passes. Inaccurate estimation will result in the performance degradation of IBFD UWA communication. From the perspective of engineering implementation, we consider that the UWA communication modem shell has a significant influence on the short-range SI channel, which will limit the efficiency of self-interference cancellation in the analog domain to some degree. Therefore we utilize a simplified model to simulate the influence of the structure of the IBFD UWA communication modem on the receiving end. This paper studies the effect of acoustic-shell coupling on near-end self-interference signal of IBFD UWA communication modem. Some suggestions on the design of shell structure of IBFD UWA communication modem are given.
2020-04-10
Ebrahimi, Najme, Yektakhah, Behzad, Sarabandi, Kamal, Kim, Hun Seok, Wentzloff, David, Blaauw, David.  2019.  A Novel Physical Layer Security Technique Using Master-Slave Full Duplex Communication. 2019 IEEE MTT-S International Microwave Symposium (IMS). :1096—1099.
In this work we present a novel technique for physical layer security in the Internet-of-Things (IoT) networks. In the proposed architecture, each IoT node generates a phase-modulated random key/data and transmits it to a master node in the presence of an eavesdropper, referred to as Eve. The master node, simultaneously, broadcasts a high power signal using an omni-directional antenna, which is received as interference by Eve. This interference masks the generated key by the IoT node and will result in a higher bit-error rate in the data received by Eve. The two legitimate intended nodes communicate in a full-duplex manner and, consequently, subtract their transmitted signals, as a known reference, from the received signal (self-interference cancellation). We compare our proposed method with a conventional approach to physical layer security based on directional antennas. In particular, we show, using theoretical and measurement results, that our proposed approach provides significantly better security measures, in terms bit error rate (BER) at Eve's location. Also, it is proven that in our novel system, the possible eavesdropping region, defined by the region with BER \textbackslashtextless; 10-1, is always smaller than the reliable communication region with BER \textbackslashtextless; 10-3.