Biblio
Filters: Keyword is classical cryptography [Clear All Filters]
Quantum Resistance for Cryptographic Keys in Classical Cryptosystems: A Study on QKD Protocols. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1—7.
.
2021. Distribution of keys in classical cryptography is one of the most significant affairs to deal with. The computational hardness is the fundamental basis of the security of these keys. However, in the era of quantum computing, quantum computers can break down these keys with their substantially more computation capability than normal computers. For instance, a quantum computer can easily break down RSA or ECC in polynomial time. In order to make the keys quantum resistant, Quantum Key Distribution (QKD) is developed to enforce security of the classical cryptographic keys from the attack of quantum computers. By using quantum mechanics, QKD can reinforce the durability of the keys of classical cryptography, which were practically unbreakable during the pre-quantum era. Thus, an extensive study is required to understand the importance of QKD to make the classical cryptographic key distributions secure against both classical and quantum computers. Therefore, in this paper, we discuss trends and limitations of key management protocols in classical cryptography, and demonstrates a relative study of different QKD protocols. In addition, we highlight the security implementation aspects of QKD, which lead to the solution of threats occurring in a quantum computing scenario, such that the cryptographic keys can be quantum resistant.
Benefits of Physical Layer Security to Cryptography: Tradeoff and Applications. 2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :1—3.
.
2019. Physical-layer security (PLS) has raised the attention of the research community in recent years, particularly for Internet of things (IoT) applications. Despite the use of classical cryptography, PLS provides security at physical layer, regardless of the computational power owned by the attacker. The investigations on PLS are numerous in the literature, but one main issue seems to be kept apart: how to measure the benefit that PLS can bring to cryptography? This paper tries to answer this question with an initial performance analysis of PLS in conjunction with typical cryptography of wireless communication protocols. Our results indicate that PLS can help cryptography to harden the attacker job in real operative scenario: PLS can increase the detection errors at the attacker's receiver, leading to inability to recover the cipher key, even if the plaintext is known.