Visible to the public Biblio

Filters: Keyword is capsule network  [Clear All Filters]
2022-11-02
Agarwal, Samaksh, Girdhar, Nancy, Raghav, Himanshu.  2021.  A Novel Neural Model based Framework for Detection of GAN Generated Fake Images. 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence). :46–51.
With the advancement in Generative Adversarial Networks (GAN), it has become easier than ever to generate fake images. These images are more realistic and non-discernible by untrained eyes and can be used to propagate fake information on the Internet. In this paper, we propose a novel method to detect GAN generated fake images by using a combination of frequency spectrum of image and deep learning. We apply Discrete Fourier Transform to each of 3 color channels of the image to obtain its frequency spectrum which shows if the image has been upsampled, a common trend in most GANs, and then train a Capsule Network model with it. Conducting experiments on a dataset of almost 1000 images based on Unconditional data modeling (StyleGan2 - ADA) gave results indicating that the model is promising with accuracy over 99% when trained on the state-of-the-art GAN model. In theory, our model should give decent results when trained with one dataset and tested on another.
2020-04-10
Huang, Yongjie, Qin, Jinghui, Wen, Wushao.  2019.  Phishing URL Detection Via Capsule-Based Neural Network. 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :22—26.

As a cyber attack which leverages social engineering and other sophisticated techniques to steal sensitive information from users, phishing attack has been a critical threat to cyber security for a long time. Although researchers have proposed lots of countermeasures, phishing criminals figure out circumventions eventually since such countermeasures require substantial manual feature engineering and can not detect newly emerging phishing attacks well enough, which makes developing an efficient and effective phishing detection method an urgent need. In this work, we propose a novel phishing website detection approach by detecting the Uniform Resource Locator (URL) of a website, which is proved to be an effective and efficient detection approach. To be specific, our novel capsule-based neural network mainly includes several parallel branches wherein one convolutional layer extracts shallow features from URLs and the subsequent two capsule layers generate accurate feature representations of URLs from the shallow features and discriminate the legitimacy of URLs. The final output of our approach is obtained by averaging the outputs of all branches. Extensive experiments on a validated dataset collected from the Internet demonstrate that our approach can achieve competitive performance against other state-of-the-art detection methods while maintaining a tolerable time overhead.