Visible to the public Biblio

Filters: Keyword is cloud-based applications  [Clear All Filters]
2021-02-16
Mujib, M., Sari, R. F..  2020.  Performance Evaluation of Data Center Network with Network Micro-segmentation. 2020 12th International Conference on Information Technology and Electrical Engineering (ICITEE). :27—32.

Research on the design of data center infrastructure is increasing, both from academia and industry, due to the rapid development of cloud-based applications such as search engines, social networks, and large-scale computing. On a large scale, data centers can consist of hundreds to thousands of servers that require systems with high-performance requirements and low downtime. To meet the network's needs in a dynamic data center, infrastructure of applications and services are growing. It takes a process of designing a network topology so that it can guarantee availability and security. One way to surmount this is by implementing the zero trust security model based on micro-segmentation. Zero trust is a security idea based on the principle of "never trust, always verify" in which no concepts of trust and untrust in network traffic. The zero trust security model implemented network traffic in the form of untrust. Micro-segmentation is a way to achieve zero trust by dividing a network into smaller logical segments to restrict the traffic. In this research, data center network performance based on software-defined networking with zero trust security model using micro-segmentation has been evaluated using a testbed simulation of Cisco Application Centric Infrastructure by measuring the round trip time, jitter, and packet loss during experiments. Performance evaluation results show that micro-segmentation adds an average round trip time of 4 μs and jitter of 11 μs without packet loss so that the security can be improved without significantly affecting network performance on the data center.

2020-04-17
Jmila, Houda, Blanc, Gregory.  2019.  Designing Security-Aware Service Requests for NFV-Enabled Networks. 2019 28th International Conference on Computer Communication and Networks (ICCCN). :1—9.

Network Function Virtualization (NFV) is a recent concept where virtualization enables the shift from network functions (e.g., routers, switches, load-balancers, proxies) on specialized hardware appliances to software images running on all-purpose, high-volume servers. The resource allocation problem in the NFV environment has received considerable attention in the past years. However, little attention was paid to the security aspects of the problem in spite of the increasing number of vulnerabilities faced by cloud-based applications. Securing the services is an urgent need to completely benefit from the advantages offered by NFV. In this paper, we show how a network service request, composed of a set of service function chains (SFC) should be modified and enriched to take into consideration the security requirements of the supported service. We examine the well-known security best practices and propose a two-step algorithm that extends the initial SFC requests to a more complex chaining model that includes the security requirements of the service.

2020-04-13
Agostino Ardagna, Claudio, Asal, Rasool, Damiani, Ernesto, El Ioini, Nabil, Pahl, Claus.  2019.  Trustworthy IoT: An Evidence Collection Approach Based on Smart Contracts. 2019 IEEE International Conference on Services Computing (SCC). :46–50.
Today, Internet of Things (IoT) implements an ecosystem where a panoply of interconnected devices collect data from physical environments and supply them to processing services, on top of which cloud-based applications are built and provided to mobile end users. The undebatable advantages of smart IoT systems clash with the need of a secure and trustworthy environment. In this paper, we propose a service-based methodology based on blockchain and smart contracts for trustworthy evidence collection at the basis of a trustworthy IoT assurance evaluation. The methodology balances the provided level of trustworthiness and its performance, and is experimentally evaluated using Hyperledger fabric blockchain.