Visible to the public Biblio

Filters: Keyword is faces  [Clear All Filters]
2021-03-29
Oğuz, K., Korkmaz, İ, Korkmaz, B., Akkaya, G., Alıcı, C., Kılıç, E..  2020.  Effect of Age and Gender on Facial Emotion Recognition. 2020 Innovations in Intelligent Systems and Applications Conference (ASYU). :1—6.

New research fields and applications on human computer interaction will emerge based on the recognition of emotions on faces. With such aim, our study evaluates the features extracted from faces to recognize emotions. To increase the success rate of these features, we have run several tests to demonstrate how age and gender affect the results. The artificial neural networks were trained by the apparent regions on the face such as eyes, eyebrows, nose, mouth, and jawline and then the networks are tested with different age and gender groups. According to the results, faces of older people have a lower performance rate of emotion recognition. Then, age and gender based groups are created manually, and we show that performance rates of facial emotion recognition have increased for the networks that are trained using these particular groups.

Alamri, M., Mahmoodi, S..  2020.  Facial Profiles Recognition Using Comparative Facial Soft Biometrics. 2020 International Conference of the Biometrics Special Interest Group (BIOSIG). :1—4.

This study extends previous advances in soft biometrics and describes to what extent soft biometrics can be used for facial profile recognition. The purpose of this research is to explore human recognition based on facial profiles in a comparative setting based on soft biometrics. Moreover, in this work, we describe and use a ranking system to determine the recognition rate. The Elo rating system is employed to rank subjects by using their face profiles in a comparative setting. The crucial features responsible for providing useful information describing facial profiles have been identified by using relative methods. Experiments based on a subset of the XM2VTSDB database demonstrate a 96% for recognition rate using 33 features over 50 subjects.

2021-03-09
Jindal, A. K., Shaik, I., Vasudha, V., Chalamala, S. R., Ma, R., Lodha, S..  2020.  Secure and Privacy Preserving Method for Biometric Template Protection using Fully Homomorphic Encryption. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1127–1134.

The rapid proliferation of biometrics has led to growing concerns about the security and privacy of the biometric data (template). A biometric uniquely identifies an individual and unlike passwords, it cannot be revoked or replaced since it is unique and fixed for every individual. To address this problem, many biometric template protection methods using fully homomorphic encryption have been proposed. But, most of them (i) are computationally expensive and practically infeasible (ii) do not support operations over real valued biometric feature vectors without quantization (iii) do not support packing of real valued feature vectors into a ciphertext (iv) require multi-shot enrollment of users for improved matching performance. To address these limitations, we propose a secure and privacy preserving method for biometric template protection using fully homomorphic encryption. The proposed method is computationally efficient and practically feasible, supports operations over real valued feature vectors without quantization and supports packing of real valued feature vectors into a single ciphertext. In addition, the proposed method enrolls the users using one-shot enrollment. To evaluate the proposed method, we use three face datasets namely LFW, FEI and Georgia tech face dataset. The encrypted face template (for 128 dimensional feature vector) requires 32.8 KB of memory space and it takes 2.83 milliseconds to match a pair of encrypted templates. The proposed method improves the matching performance by 3 % when compared to state-of-the-art, while providing high template security.

2021-03-04
Ghaffaripour, S., Miri, A..  2020.  A Decentralized, Privacy-preserving and Crowdsourcing-based Approach to Medical Research. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :4510—4515.
Access to data at large scales expedites the progress of research in medical fields. Nevertheless, accessibility to patients' data faces significant challenges on regulatory, organizational and technical levels. In light of this, we present a novel approach based on the crowdsourcing paradigm to solve this data scarcity problem. Utilizing the infrastructure that blockchain provides, our decentralized platform enables researchers to solicit contributions to their well-defined research study from a large crowd of volunteers. Furthermore, to overcome the challenge of breach of privacy and mutual trust, we employed the cryptographic primitive of Zero-knowledge Argument of Knowledge (zk-SNARK). This not only allows participants to make contributions without exposing their privacy-sensitive health data, but also provides a means for a distributed network of users to verify the validity of the contributions in an efficient manner. Finally, since without an incentive mechanism in place, the crowdsourcing platform would be rendered ineffective, we incorporated smart contracts to ensure a fair reciprocal exchange of data for reward between patients and researchers.
2021-03-01
Sarathy, N., Alsawwaf, M., Chaczko, Z..  2020.  Investigation of an Innovative Approach for Identifying Human Face-Profile Using Explainable Artificial Intelligence. 2020 IEEE 18th International Symposium on Intelligent Systems and Informatics (SISY). :155–160.
Human identification is a well-researched topic that keeps evolving. Advancement in technology has made it easy to train models or use ones that have been already created to detect several features of the human face. When it comes to identifying a human face from the side, there are many opportunities to advance the biometric identification research further. This paper investigates the human face identification based on their side profile by extracting the facial features and diagnosing the feature sets with geometric ratio expressions. These geometric ratio expressions are computed into feature vectors. The last stage involves the use of weighted means to measure similarity. This research addresses the problem of using an eXplainable Artificial Intelligence (XAI) approach. Findings from this research, based on a small data-set, conclude that the used approach offers encouraging results. Further investigation could have a significant impact on how face profiles can be identified. Performance of the proposed system is validated using metrics such as Precision, False Acceptance Rate, False Rejection Rate and True Positive Rate. Multiple simulations indicate an Equal Error Rate of 0.89.
2021-01-28
Wang, N., Song, H., Luo, T., Sun, J., Li, J..  2020.  Enhanced p-Sensitive k-Anonymity Models for Achieving Better Privacy. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :148—153.

To our best knowledge, the p-sensitive k-anonymity model is a sophisticated model to resist linking attacks and homogeneous attacks in data publishing. However, if the distribution of sensitive values is skew, the model is difficult to defend against skew attacks and even faces sensitive attacks. In practice, the privacy requirements of different sensitive values are not always identical. The “one size fits all” unified privacy protection level may cause unnecessary information loss. To address these problems, the paper quantifies privacy requirements with the concept of IDF and concerns more about sensitive groups. Two enhanced anonymous models with personalized protection characteristic, that is, (p,αisg) -sensitive k-anonymity model and (pi,αisg)-sensitive k-anonymity model, are then proposed to resist skew attacks and sensitive attacks. Furthermore, two clustering algorithms with global search and local search are designed to implement our models. Experimental results show that the two enhanced models have outstanding advantages in better privacy at the expense of a little data utility.

2021-01-15
Gandhi, A., Jain, S..  2020.  Adversarial Perturbations Fool Deepfake Detectors. 2020 International Joint Conference on Neural Networks (IJCNN). :1—8.
This work uses adversarial perturbations to enhance deepfake images and fool common deepfake detectors. We created adversarial perturbations using the Fast Gradient Sign Method and the Carlini and Wagner L2 norm attack in both blackbox and whitebox settings. Detectors achieved over 95% accuracy on unperturbed deepfakes, but less than 27% accuracy on perturbed deepfakes. We also explore two improvements to deep-fake detectors: (i) Lipschitz regularization, and (ii) Deep Image Prior (DIP). Lipschitz regularization constrains the gradient of the detector with respect to the input in order to increase robustness to input perturbations. The DIP defense removes perturbations using generative convolutional neural networks in an unsupervised manner. Regularization improved the detection of perturbed deepfakes on average, including a 10% accuracy boost in the blackbox case. The DIP defense achieved 95% accuracy on perturbed deepfakes that fooled the original detector while retaining 98% accuracy in other cases on a 100 image subsample.
Khodabakhsh, A., Busch, C..  2020.  A Generalizable Deepfake Detector based on Neural Conditional Distribution Modelling. 2020 International Conference of the Biometrics Special Interest Group (BIOSIG). :1—5.
Photo- and video-realistic generation techniques have become a reality following the advent of deep neural networks. Consequently, there are immense concerns regarding the difficulty in differentiating what content is real from what is synthetic. An example of video-realistic generation techniques is the infamous Deepfakes, which exploit the main modality by which humans identify each other. Deepfakes are a category of synthetic face generation methods and are commonly based on generative adversarial networks. In this article, we propose a novel two-step synthetic face image detection method in which general-purpose features are extracted in a first step, trivializing the task of detecting synthetic images. The anomaly detector predicts the conditional probabilities for observing every individual pixel in the image and is trained on pristine data only. The extracted anomaly features demonstrate true generalization capacity across widely different unknown synthesis methods while showing a minimal loss in performance with regard to the detection of known synthetic samples.
Maksutov, A. A., Morozov, V. O., Lavrenov, A. A., Smirnov, A. S..  2020.  Methods of Deepfake Detection Based on Machine Learning. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :408—411.
Nowadays, people faced an emerging problem of AI-synthesized face swapping videos, widely known as the DeepFakes. This kind of videos can be created to cause threats to privacy, fraudulence and so on. Sometimes good quality DeepFake videos recognition could be hard to distinguish with people eyes. That's why researchers need to develop algorithms to detect them. In this work, we present overview of indicators that can tell us about the fact that face swapping algorithms were used on photos. Main purpose of this paper is to find algorithm or technology that can decide whether photo was changed with DeepFake technology or not with good accuracy.
Nguyen, H. M., Derakhshani, R..  2020.  Eyebrow Recognition for Identifying Deepfake Videos. 2020 International Conference of the Biometrics Special Interest Group (BIOSIG). :1—5.
Deepfake imagery that contains altered faces has become a threat to online content. Current anti-deepfake approaches usually do so by detecting image anomalies, such as visible artifacts or inconsistencies. However, with deepfake advances, these visual artifacts are becoming harder to detect. In this paper, we show that one can use biometric eyebrow matching as a tool to detect manipulated faces. Our method could provide an 0.88 AUC and 20.7% EER for deepfake detection when applied to the highest quality deepfake dataset, Celeb-DF.
2020-04-13
Sanchez, Cristian, Martinez-Mosquera, Diana, Navarrete, Rosa.  2019.  Matlab Simulation of Algorithms for Face Detection in Video Surveillance. 2019 International Conference on Information Systems and Software Technologies (ICI2ST). :40–47.
Face detection is an application widely used in video surveillance systems and it is the first step for subsequent applications such as monitoring and recognition. For facial detection, there are a series of algorithms that allow the face to be extracted in a video image, among which are the Viola & Jones waterfall method and the method by geometric models using the Hausdorff distance. In this article, both algorithms are theoretically analyzed and the best one is determined by efficiency and resource optimization. Considering the most common problems in the detection of faces in a video surveillance system, such as the conditions of brightness and the angle of rotation of the face, tests have been carried out in 13 different scenarios with the best theoretically analyzed algorithm and its combination with another algorithm The images obtained, using a digital camera in the 13 scenarios, have been analyzed using Matlab code of the Viola & Jones and Viola & Jones algorithm combined with the Kanade-Lucas-Tomasi algorithm to add the feature of completing the tracking of a single object. This paper presents the detection percentages, false positives and false negatives for each image and for each simulation code, resulting in the scenarios with the most detection problems and the most accurate algorithm in face detection.