Visible to the public Biblio

Filters: Keyword is Amazon Web Services  [Clear All Filters]
2021-05-05
Rizvi, Syed R, Lubawy, Andrew, Rattz, John, Cherry, Andrew, Killough, Brian, Gowda, Sanjay.  2020.  A Novel Architecture of Jupyterhub on Amazon Elastic Kubernetes Service for Open Data Cube Sandbox. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. :3387—3390.

The Open Data Cube (ODC) initiative, with support from the Committee on Earth Observation Satellites (CEOS) System Engineering Office (SEO) has developed a state-of-the-art suite of software tools and products to facilitate the analysis of Earth Observation data. This paper presents a short summary of our novel architecture approach in a project related to the Open Data Cube (ODC) community that provides users with their own ODC sandbox environment. Users can have a sandbox environment all to themselves for the purpose of running Jupyter notebooks that leverage the ODC. This novel architecture layout will remove the necessity of hosting multiple users on a single Jupyter notebook server and provides better management tooling for handling resource usage. In this new layout each user will have their own credentials which will give them access to a personal Jupyter notebook server with access to a fully deployed ODC environment enabling exploration of solutions to problems that can be supported by Earth observation data.

2020-08-24
Torkura, Kennedy A., Sukmana, Muhammad I.H., Cheng, Feng, Meinel, Christoph.  2019.  SlingShot - Automated Threat Detection and Incident Response in Multi Cloud Storage Systems. 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA). :1–5.
Cyber-attacks against cloud storage infrastructure e.g. Amazon S3 and Google Cloud Storage, have increased in recent years. One reason for this development is the rising adoption of cloud storage for various purposes. Robust counter-measures are therefore required to tackle these attacks especially as traditional techniques are not appropriate for the evolving attacks. We propose a two-pronged approach to address these challenges in this paper. The first approach involves dynamic snapshotting and recovery strategies to detect and partially neutralize security events. The second approach builds on the initial step by automatically correlating the generated alerts with cloud event log, to extract actionable intelligence for incident response. Thus, malicious activities are investigated, identified and eliminated. This approach is implemented in SlingShot, a cloud threat detection and incident response system which extends our earlier work - CSBAuditor, which implements the first step. The proposed techniques work together in near real time to mitigate the aforementioned security issues on Amazon Web Services (AWS) and Google Cloud Platform (GCP). We evaluated our techniques using real cloud attacks implemented with static and dynamic methods. The average Mean Time to Detect is 30 seconds for both providers, while the Mean Time to Respond is 25 minutes and 90 minutes for AWS and GCP respectively. Thus, our proposal effectively tackles contemporary cloud attacks.
2020-05-11
Kanimozhi, V., Jacob, T. Prem.  2019.  Artificial Intelligence based Network Intrusion Detection with Hyper-Parameter Optimization Tuning on the Realistic Cyber Dataset CSE-CIC-IDS2018 using Cloud Computing. 2019 International Conference on Communication and Signal Processing (ICCSP). :0033–0036.

One of the latest emerging technologies is artificial intelligence, which makes the machine mimic human behavior. The most important component used to detect cyber attacks or malicious activities is the Intrusion Detection System (IDS). Artificial intelligence plays a vital role in detecting intrusions and widely considered as the better way in adapting and building IDS. In trendy days, artificial intelligence algorithms are rising as a brand new computing technique which will be applied to actual time issues. In modern days, neural network algorithms are emerging as a new artificial intelligence technique that can be applied to real-time problems. The proposed system is to detect a classification of botnet attack which poses a serious threat to financial sectors and banking services. The proposed system is created by applying artificial intelligence on a realistic cyber defense dataset (CSE-CIC-IDS2018), the very latest Intrusion Detection Dataset created in 2018 by Canadian Institute for Cybersecurity (CIC) on AWS (Amazon Web Services). The proposed system of Artificial Neural Networks provides an outstanding performance of Accuracy score is 99.97% and an average area under ROC (Receiver Operator Characteristic) curve is 0.999 and an average False Positive rate is a mere value of 0.001. The proposed system using artificial intelligence of botnet attack detection is powerful, more accurate and precise. The novel proposed system can be implemented in n machines to conventional network traffic analysis, cyber-physical system traffic data and also to the real-time network traffic analysis.

2020-04-17
Brugman, Jonathon, Khan, Mohammed, Kasera, Sneha, Parvania, Masood.  2019.  Cloud Based Intrusion Detection and Prevention System for Industrial Control Systems Using Software Defined Networking. 2019 Resilience Week (RWS). 1:98—104.

Industrial control systems (ICS) are becoming more integral to modern life as they are being integrated into critical infrastructure. These systems typically lack application layer encryption and the placement of common network intrusion services have large blind spots. We propose the novel architecture, Cloud Based Intrusion Detection and Prevention System (CB-IDPS), to detect and prevent threats in ICS networks by using software defined networking (SDN) to route traffic to the cloud for inspection using network function virtualization (NFV) and service function chaining. CB-IDPS uses Amazon Web Services to create a virtual private cloud for packet inspection. The CB-IDPS framework is designed with considerations to the ICS delay constraints, dynamic traffic routing, scalability, resilience, and visibility. CB-IDPS is presented in the context of a micro grid energy management system as the test case to prove that the latency of CB-IDPS is within acceptable delay thresholds. The implementation of CB-IDPS uses the OpenDaylight software for the SDN controller and commonly used network security tools such as Zeek and Snort. To our knowledge, this is the first attempt at using NFV in an ICS context for network security.