Biblio
Filters: Keyword is error rate [Clear All Filters]
Flexible Design of Finite Blocklength Wiretap Codes by Autoencoders. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2512—2516.
.
2019. With an increasing number of wireless devices, the risk of being eavesdropped increases as well. From information theory, it is well known that wiretap codes can asymptotically achieve vanishing decoding error probability at the legitimate receiver while also achieving vanishing leakage to eavesdroppers. However, under finite blocklength, there exists a tradeoff among different parameters of the transmission. In this work, we propose a flexible wiretap code design for Gaussian wiretap channels under finite blocklength by neural network autoencoders. We show that the proposed scheme has higher flexibility in terms of the error rate and leakage tradeoff, compared to the traditional codes.
Does Certificate Transparency Break the Web? Measuring Adoption and Error Rate 2019 IEEE Symposium on Security and Privacy (SP). :211—226.
.
2019. Certificate Transparency (CT) is an emerging system for enabling the rapid discovery of malicious or misissued certificates. Initially standardized in 2013, CT is now finally beginning to see widespread support. Although CT provides desirable security benefits, web browsers cannot begin requiring all websites to support CT at once, due to the risk of breaking large numbers of websites. We discuss challenges for deployment, analyze the adoption of CT on the web, and measure the error rates experienced by users of the Google Chrome web browser. We find that CT has so far been widely adopted with minimal breakage and warnings. Security researchers often struggle with the tradeoff between security and user frustration: rolling out new security requirements often causes breakage. We view CT as a case study for deploying ecosystem-wide change while trying to minimize end user impact. We discuss the design properties of CT that made its success possible, as well as draw lessons from its risks and pitfalls that could be avoided in future large-scale security deployments.