Visible to the public Biblio

Filters: Keyword is system overhead  [Clear All Filters]
2021-07-27
Lu, Tao, Xu, Hongyun, Tian, Kai, Tian, Cenxi, Jiang, Rui.  2020.  Semantic Location Privacy Protection Algorithm Based on Edge Cluster Graph. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1304–1309.
With the development of positioning technology and the popularity of mobile devices, location-based services have been widely deployed. To use the services, users must provide the server accurate location information, during which the attacker tends to infer sensitive information from intercepting queries. In this paper, we model the road network as an edge cluster graph with its location semantics considered. Then, we propose the Circle First Structure Optimization (CFSO) algorithm which generates an anonymous set by adding optimal adjacent locations. Furthermore, we introduce controllable randomness and propose the Attack-Resilient (AR) algorithm to enhance the anti-attack ability. Meanwhile, to reduce the system overhead, our algorithms build the anonymous set quickly and take the structure of the anonymous set into account. Finally, we conduct experiments on a real map and the results demonstrate a higher anonymity success rate and a stronger anti-attack capability with less system overhead.
2020-04-20
To, Hien, Shahabi, Cyrus, Xiong, Li.  2018.  Privacy-Preserving Online Task Assignment in Spatial Crowdsourcing with Untrusted Server. 2018 IEEE 34th International Conference on Data Engineering (ICDE). :833–844.
With spatial crowdsourcing (SC), requesters outsource their spatiotemporal tasks (tasks associated with location and time) to a set of workers, who will perform the tasks by physically traveling to the tasks' locations. However, current solutions require the locations of the workers and/or the tasks to be disclosed to untrusted parties (SC server) for effective assignments of tasks to workers. In this paper we propose a framework for assigning tasks to workers in an online manner without compromising the location privacy of workers and tasks. We perturb the locations of both tasks and workers based on geo-indistinguishability and then devise techniques to quantify the probability of reachability between a task and a worker, given their perturbed locations. We investigate both analytical and empirical models for quantifying the worker-task pair reachability and propose task assignment strategies that strike a balance among various metrics such as the number of completed tasks, worker travel distance and system overhead. Extensive experiments on real-world datasets show that our proposed techniques result in minimal disclosure of task locations and no disclosure of worker locations without significantly sacrificing the total number of assigned tasks.