Visible to the public Biblio

Filters: Keyword is predictive accuracy  [Clear All Filters]
2020-12-01
Harris, L., Grzes, M..  2019.  Comparing Explanations between Random Forests and Artificial Neural Networks. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). :2978—2985.

The decisions made by machines are increasingly comparable in predictive performance to those made by humans, but these decision making processes are often concealed as black boxes. Additional techniques are required to extract understanding, and one such category are explanation methods. This research compares the explanations of two popular forms of artificial intelligence; neural networks and random forests. Researchers in either field often have divided opinions on transparency, and comparing explanations may discover similar ground truths between models. Similarity can help to encourage trust in predictive accuracy alongside transparent structure and unite the respective research fields. This research explores a variety of simulated and real-world datasets that ensure fair applicability to both learning algorithms. A new heuristic explanation method that extends an existing technique is introduced, and our results show that this is somewhat similar to the other methods examined whilst also offering an alternative perspective towards least-important features.

2020-04-20
Kundu, Suprateek, Suthaharan, Shan.  2019.  Privacy-Preserving Predictive Model Using Factor Analysis for Neuroscience Applications. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :67–73.
The purpose of this article is to present an algorithm which maximizes prediction accuracy under a linear regression model while preserving data privacy. This approach anonymizes the data such that the privacy of the original features is fully guaranteed, and the deterioration in predictive accuracy using the anonymized data is minimal. The proposed algorithm employs two stages: the first stage uses a probabilistic latent factor approach to anonymize the original features into a collection of lower dimensional latent factors, while the second stage uses an optimization algorithm to tune the anonymized data further, in a way which ensures a minimal loss in prediction accuracy under the predictive approach specified by the user. We demonstrate the advantages of our approach via numerical studies and apply our method to high-dimensional neuroimaging data where the goal is to predict the behavior of adolescents and teenagers based on functional magnetic resonance imaging (fMRI) measurements.