Visible to the public Biblio

Filters: Keyword is user privacy security  [Clear All Filters]
2020-09-04
Zhao, Zhen, Lai, Jianchang, Susilo, Willy, Wang, Baocang, Hu, Yupu, Guo, Fuchun.  2019.  Efficient Construction for Full Black-Box Accountable Authority Identity-Based Encryption. IEEE Access. 7:25936—25947.

Accountable authority identity-based encryption (A-IBE), as an attractive way to guarantee the user privacy security, enables a malicious private key generator (PKG) to be traced if it generates and re-distributes a user private key. Particularly, an A-IBE scheme achieves full black-box security if it can further trace a decoder box and is secure against a malicious PKG who can access the user decryption results. In PKC'11, Sahai and Seyalioglu presented a generic construction for full black-box A-IBE from a primitive called dummy identity-based encryption, which is a hybrid between IBE and attribute-based encryption (ABE). However, as the complexity of ABE, their construction is inefficient and the size of private keys and ciphertexts in their instantiation is linear in the length of user identity. In this paper, we present a new efficient generic construction for full black-box A-IBE from a new primitive called token-based identity-based encryption (TB-IBE), without using ABE. We first formalize the definition and security model for TB-IBE. Subsequently, we show that a TB-IBE scheme satisfying some properties can be converted to a full black-box A-IBE scheme, which is as efficient as the underlying TB-IBE scheme in terms of computational complexity and parameter sizes. Finally, we give an instantiation with the computational complexity as O(1) and the constant size master key pair, private keys, and ciphertexts.

2020-04-20
Xiang, Wei.  2019.  An Efficient Location Privacy Preserving Model based on Geohash. 2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC). :1–5.
With the rapid development of location-aware mobile devices, location-based services have been widely used. When LBS (Location Based Services) bringing great convenience and profits, it also brings great hidden trouble, among which user privacy security is one of them. The paper builds a LBS privacy protection model and develops algorithm depend on the technology of one dimensional coding of Geohash geographic information. The results of experiments and data measurements show that the model the model has reached k-anonymity effect and has good performance in avoiding attacking from the leaked information in a continuous query with the user's background knowledge. It also has a preferable performance in time cost of system process.