Biblio
Filters: Keyword is Diffusion processes [Clear All Filters]
New Image Encryption Algorithm based on Pixel Confusion-Diffusion using Hash Functions and Chaotic Map. 2022 7th International Conference on Communication and Electronics Systems (ICCES). :862—867.
.
2022. Information privacy and security has become a necessity in the rapid growth of computer technology. A new algorithm for image encryption is proposed in this paper; using hash functions, chaotic map and two levels of diffusion process. The initialization key for chaos map is generated with the help of two hash functions. The initial seed for these hash functions is the sum of rows, columns and pixels across the diagonal of the plain image. Firstly, the image is scrambled using quantization unit. In the first level of diffusion process, the pixel values of the scrambled image are XOR with the normalized chaotic map. Odd pixel value is XOR with an even bit of chaotic map and even pixel is XOR with an odd bit of chaotic map. To achieve strong encryption, the image undergoes a second level of diffusion process where it is XOR with the map a finite number of times. After every round, the pixel array is circular shifted three times to achieve a strong encrypted image. The experimental and comparative analysis done with state of the art techniques on the proposed image encryption algorithm shows that it is strong enough to resist statistical and differential attacks present in the communication channel.
Studying Communications Resiliency in Emergency Plans. 2020 Spring Simulation Conference (SpringSim). :1–12.
.
2020. Recent disasters have shown that hazards can be unpredictable and can have catastrophic consequences. Emergency plans are key to dealing with these situations and communications play a key role in emergency management. In this paper, we provide a formalism to design resilient emergency plans in terms of communications. We exemplify how to use the formalism using a case study of a Nuclear Emergency Plan.
Social Privacy Score Through Vulnerability Contagion Process. 2019 Fifth Conference on Mobile and Secure Services (MobiSecServ). :1–6.
.
2019. The exponential usage of messaging services for communication raises many questions in privacy fields. Privacy issues in such services strongly depend on the graph-theoretical properties of users' interactions representing the real friendships between users. One of the most important issues of privacy is that users may disclose information of other users beyond the scope of the interaction, without realizing that such information could be aggregated to reveal sensitive information. Determining vulnerable interactions from non-vulnerable ones is difficult due to the lack of awareness mechanisms. To address this problem, we analyze the topological relationships with the level of trust between users to notify each of them about their vulnerable social interactions. Particularly, we analyze the impact of trusting vulnerable friends in infecting other users' privacy concerns by modeling a new vulnerability contagion process. Simulation results show that over-trusting vulnerable users speeds the vulnerability diffusion process through the network. Furthermore, vulnerable users with high reputation level lead to a high convergence level of infection, this means that the vulnerability contagion process infects the biggest number of users when vulnerable users get a high level of trust from their interlocutors. This work contributes to the development of privacy awareness framework that can alert users of the potential private information leakages in their communications.