Visible to the public Biblio

Filters: Keyword is wave energy converter  [Clear All Filters]
2022-02-10
AIT ALI, Mohamed Elamine, AGOUZOUL, Mohamed, AANNAQUE, Abdeslam.  2020.  Analytical and numerical study of an oscillating liquid inside a U-tube used as wave energy converter. 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC). :1–5.
The objective of this work is to study, using an analytical approach and a numerical simulation, the dynamic behavior of an oscillating liquid inside a fixed U-tube with open ends used as wave energy converter. By establishing a detailed liquid's motion equation and developing a numerical simulation, based on volume of fluid formulation, we quantified the available power that could be extracted for our configuration. A parametrical study using the analytical model showed the effect of each significant parameter on first peak power and subsequent dampening of this peak power, which constitutes a tool for choosing optimal designs. The numerical simulation gave a more realistic model, the obtained results are in good agreements with those of the analytical approach that underestimates the dampening of oscillations. We focused after on influence of the numerical model formulation, mesh type and mesh size on simulation results: no noticeable effect was observed.
ISSN: 2644-1837
2020-04-24
Rahman, Lamiya, Adan, Jannatul, Nahid-AI-Masood, Deeba, Shohana Rahman.  2018.  Performance Analysis of Floating Buoy Point Absorber and Oscillating Surge Wave Energy Converters in Onshore and Offshore Locations. 2018 10th International Conference on Electrical and Computer Engineering (ICECE). :233—236.

The aim of this paper is to explore the performance of two well-known wave energy converters (WECs) namely Floating Buoy Point Absorber (FBPA) and Oscillating Surge (OS) in onshore and offshore locations. To achieve clean energy targets by reducing greenhouse gas emissions, integration of renewable energy resources is continuously increasing all around the world. In addition to widespread renewable energy source such as wind and solar photovoltaic (PV), wave energy extracted from ocean is becoming more tangible day by day. In the literature, a number of WEC devices are reported. However, further investigations are still needed to better understand the behaviors of FBPA WEC and OS WEC under irregular wave conditions in onshore and offshore locations. Note that being surrounded by Bay of Bengal, Bangladesh has huge scope of utilizing wave power. To this end, FBPA WEC and OS WEC are simulated using the typical onshore and offshore wave height and wave period of the coastal area of Bangladesh. Afterwards, performances of the aforementioned two WECs are compared by analyzing their power output.

de Rooij, Sjors, Laguna, Antonio Jarquin.  2019.  Modelling of submerged oscillating water columns with mass transfer for wave energy extraction. 2019 Offshore Energy and Storage Summit (OSES). :1—9.
Oscillating-water-column (OWC) devices are a very important type of wave energy converters which have been extensively studied over the years. Although most designs of OWC are based on floating or fixed structures exposed above the surface level, little is known from completely submerged systems which can benefit from reduced environmental loads and a simplified structural design. The submerged type of resonant duct consists of two OWCs separated by a weir and air chamber instead of the commonly used single column. Under conditions close to resonance, water flows from the first column into the second one, resulting in a positive flow through the system from which energy can be extracted by a hydro turbine. While existing work has looked at the study of the behaviour of one OWC, this paper addresses the dynamic interaction between the two water columns including the mass transfer mechanism as well as the associated change of momentum. A numerical time-domain model is used to obtain some initial results on the performance and response of the system for different design parameters. The model is derived from 1D conservation of mass and momentum equations, including hydrodynamic effects, adiabatic air compressibility and turbine induced damping. Preliminary results indicate that the mass transfer has an important effect both on the resonance amplification and on the phase between the motion of the two columns. Simulation results are presented for the system performance over several weir heights and regular wave conditions. Further work will continue in design optimization and experimental validation of the proposed model.