Visible to the public Biblio

Filters: Keyword is power factor correction  [Clear All Filters]
2022-07-29
de Souza Donato, Robson, de Aguiar, Marlius Hudson, Cruz, Roniel Ferreira, Vitorino, Montiê Alves, de Rossiter Corrêa, Maurício Beltrão.  2021.  Two-Switch Zeta-Based Single-Phase Rectifier With Inherent Power Decoupling And No Extra Buffer Circuit. 2021 IEEE Applied Power Electronics Conference and Exposition (APEC). :1830–1836.
In some single-phase systems, power decoupling is necessary to balance the difference between constant power at load side and double-frequency ripple power at AC side. The application of active power decoupling methods aim to smooth this power oscillatory component, but, in general, these methods require the addition of many semiconductor devices and/or energy storage components, which is not lined up with achieving low cost, high efficiency and high power quality. This paper presents the analysis of a new single-phase rectifier based on zeta topology with power decoupling function and power factor correction using only two active switches and without extra reactive components. Its behavior is based on three stages of operation in a switching period, such that the power oscillating component is stored in one of the inherent zeta inductor. The theoretical foundation that justifies its operation is presented, as well as the simulation and experimental results to validate the applied concepts.
2020-04-24
Bellec, Q., le Claire, J.C., Benkhoris, M.F., Coulibaly, P..  2019.  Investigation of time delay effects on the current in a power converter regulated by Phase-Shift Self-Oscillating Current Controller. 2019 21st European Conference on Power Electronics and Applications (EPE '19 ECCE Europe). :P.1–P.10.

This paper deals with effects of current sensor bandwidth and time delays in a system controlled by a Phase-Shift Self-Oscillating Current Controller (PSSOCC). The robustness of this current controller has been proved in former works showing its good performances in a large range of applications including AC/DC and DC/AC converters, power factor correction, active filters, isolation amplifiers and motor control. As switching frequencies can be upper than 30kHz, time delays and bandwidth limitations cannot be neglected in comparison with former works on this robust current controller. Thus, several models are proposed in this paper to analyze system behaviours. Those models permit to find analytical expressions binding maximum oscillation frequency with time delay and/or additional filter parameters. Through current spectrums analysis, quality of analytical expressions is proved for each model presented in this work. An experimental approach shows that every element of the electronic board having a low-pass effect or delaying command signals need to be included in the model in order to have a perfect match between calculations, simulations and practical results.