Visible to the public Biblio

Filters: Keyword is Bridge circuits  [Clear All Filters]
2023-07-19
Zhao, Hongwei, Qi, Yang, Li, Weilin.  2022.  Decentralized Power Management for Multi-active Bridge Converter. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society. :1—6.
Multi-active bridge (MAB) converter has played an important role in the power conversion of renewable-based smart grids, electrical vehicles, and more/all electrical aircraft. However, the increase of MAB submodules greatly complicates the control architecture. In this regard, the conventional centralized control strategies, which rely on a single controller to process all the information, will be limited by the computation burden. To overcome this issue, this paper proposes a decentralized power management strategy for MAB converter. The switching frequencies of MAB submodules are adaptively regulated based on the submodule local information. Through this effort, flexible electrical power routing can be realized without communications among submodules. The proposed methodology not only relieves the computation burden of MAB control system, but also improves its modularity, flexibility, and expandability. Finally, the experiment results of a three-module MAB converter are presented for verification.
2020-04-24
Noeren, Jannis, Parspour, Nejila.  2019.  A Dynamic Model for Contactless Energy Transfer Systems. 2019 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW). :297—301.

Inductive contactless energy transfer (CET) systems show a certain oscillating transient behavior of inrush currents on both system sides. This causes current overshoots in the electrical components and has to be considered for the system dimensioning. This paper presents a simple and yet very accurate model, which describes the dynamic behavior of series-series compensated inductive CET systems. This model precisely qualifies the systems current courses for both sides in time domain. Additionally, an analysis in frequency domain allows further knowledge for parameter estimation. Since this model is applicable for purely resistive loads and constant voltage loads with bridge rectifiers, it is very practicable and can be useful for control techniques and narameter estimation.