Visible to the public Biblio

Filters: Keyword is Doubly fed induction generators  [Clear All Filters]
2023-02-02
Tian, Yingchi, Xiao, Shiwu.  2022.  Parameter sensitivity analysis and adjustment for subsynchronous oscillation stability of doubly-fed wind farms with static var generator. 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP). :215–219.
The interaction between the transmission system of doubly-fed wind farms and the power grid and the stability of the system have always been widely concerned at home and abroad. In recent years, wind farms have basically installed static var generator (SVG) to improve voltage stability. Therefore, this paper mainly studies the subsynchronous oscillation (SSO) problem in the grid-connected grid-connected doubly-fed wind farm with static var generators. Firstly based on impedance analysis, the sequence impedance model of the doubly-fed induction generator and the static var generator is established by the method. Then, based on the stability criterion of Bode plot and time domain simulation, the influence of the access of the static var generator on the SSO of the system is analyzed. Finally, the sensitivity analysis of the main parameters of the doubly-fed induction generator and the static var generator is carried out. The results show that the highest sensitivity is the proportional gain parameter of the doubly-fed induction generator current inner loop, and its value should be reduced to reduce the risk of SSO of the system.
2020-04-24
M'zoughi, Fares, Garrido, Aitor J., Garrido, Izaskun, Bouallègue, Soufiene, Ayadi, Mounir.  2018.  Sliding Mode Rotational Speed Control of an Oscillating Water Column-based Wave Generation Power Plants. 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). :1263—1270.

This paper deals with the modeling and control of the NEREIDA wave generation power plant installed in Mutriku, Spain. This kind of Oscillating Water Column (OWC) plants usually employ a Wells turbine coupled to a Doubly Fed Induction Generator (DFIG). The stalling behavior of the Wells turbine limits the generated power. In this context, a sliding mode rotational speed control is proposed to help avoiding this phenomenon. This will regulate the speed by means of the Rotor Side Converter (RSC) of the Back-to-Back converter governing the generator. The results of the comparative study show that the proposed control provides a higher generated power compared to the uncontrolled case.

M'zoughi, Fares, Bouallègue, Soufiene, Ayadi, Mounir, Garrido, Aitor J., Garrido, Izaskun.  2018.  Harmony search algorithm-based airflow control of an oscillating water column-based wave generation power plants. 2018 International Conference on Advanced Systems and Electric Technologies (IC\_ASET). :249—254.

The NEREIDA wave generation power plant installed in Mutriku, Spain is a multiple Oscillating Water Column (OWC) plant. The power takeoff consists of a Wells turbine coupled to a Doubly Fed Induction Generator (DFIG). The stalling behavior present in the Wells turbine limits the generated power. This paper presents the modeling and a Harmony Search Algorithm-based airflow control of the OWC. The Harmony Search Algorithm (HSA) is proposed to help overcome the limitations of a traditionally tuned PID. An investigation between HSA-tuned controller and the traditionally tuned controller has been performed. Results of the controlled and uncontrolled plant prove the effectiveness of the airflow control and the superiority of the HSA-tuned controller.