Visible to the public Biblio

Filters: Keyword is 5G mobile networks  [Clear All Filters]
2020-06-08
Boubakri, Wided, Abdallah, Walid, Boudriga, Noureddine.  2019.  Game-Based Attack Defense Model to Provide Security for Relay Selection in 5G Mobile Networks. 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :160–167.

5G mobile networks promise universal communication environment and aims at providing higher bandwidth, increased communication and networking capabilities, and extensive signal coverage by using multiple communication technologies including Device-to-Device (D-to-D). This paradigm, will allow scalable and ubiquitous connectivity for large-scale mobile networks where a huge number of heterogeneous devices with limited resources will cooperate to enhance communication efficiency in terms of link reliability, spectral efficiency, system capacity, and transmission range. However, owing to its decentralized nature, cooperative D-to-D communication could be vulnerable to attacks initiated on relay nodes. Consequently, a source node has the interest to select the more protected relay to ensure the security of its traffic. Nevertheless, an improvement in the protection level has a counterpart cost that must be sustained by the device. To address this trade-off as well as the interaction between the attacker and the source device, we propose a dynamic game theoretic based approach to model and analyze this problem as a cost model. The utility function of the proposed non-cooperative game is based on the concepts of return on protection and return on attack which illustrate the gain of selecting a relay for transmitting a data packet by a source node and the reward of the attacker to perform an attack to compromise the transmitted data. Moreover, we discuss and analyze Nash equilibrium convergence of this attack-defense model and we propose an heuristic algorithm that can determine the equilibrium state in a limited number of running stages. Finally, we perform simulation work to show the effectiveness of the game model in assessing the behavior of the source node and the attacker and its ability to reach equilibrium within a finite number of steps.

2020-05-04
Steinke, Michael, Adam, Iris, Hommel, Wolfgang.  2018.  Multi-Tenancy-Capable Correlation of Security Events in 5G Networks. 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :1–6.
The concept of network slicing in 5G mobile networks introduces new challenges for security management: Given the combination of Infrastructure-as-a-Service cloud providers, mobile network operators as Software-as-a-Service providers, and the various verticals as customers, multi-layer and multi-tenancy-capable management architectures are required. This paper addresses the challenges for correlation of security events in such 5G scenarios with a focus on event processing at telecommunication service providers. After an analysis of the specific demand for network-slice-centric security event correlation in 5G networks, ongoing standardization efforts, and related research, we propose a multi-tenancy-capable event correlation architecture along with a scalable information model. The event processing, alerting, and correlation workflow is discussed and has been implemented in a network and security management system prototype, leading to a demonstration of first results acquired in a lab setup.