Visible to the public Biblio

Filters: Keyword is Cyberspace  [Clear All Filters]
2022-07-13
Zuo, Jinxin, Guo, Ziyu, Gan, Jiefu, Lu, Yueming.  2021.  Enhancing Continuous Service of Information Systems Based on Cyber Resilience. 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). :535—542.

Cyber resilience has become a strategic point of information security in recent years. In the face of complex attack means and severe internal and external threats, it is difficult to achieve 100% protection against information systems. It is necessary to enhance the continuous service of information systems based on network resiliency and take appropriate compensation measures in case of protection failure, to ensure that the mission can still be achieved under attack. This paper combs the definition, cycle, and state of cyber resilience, and interprets the cyber resiliency engineering framework, to better understand cyber resilience. In addition, we also discuss the evolution of security architecture and analyze the impact of cyber resiliency on security architecture. Finally, the strategies and schemes of enhancing cyber resilience represented by zero trust and endogenous security are discussed.

2022-06-15
Zou, Kexin, Shi, Jinqiao, Gao, Yue, Wang, Xuebin, Wang, Meiqi, Li, Zeyu, Su, Majing.  2021.  Bit-FP: A Traffic Fingerprinting Approach for Bitcoin Hidden Service Detection. 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). :99–105.
Bitcoin is a virtual encrypted digital currency based on a peer-to-peer network. In recent years, for higher anonymity, more and more Bitcoin users try to use Tor hidden services for identity and location hiding. However, previous studies have shown that Tor are vulnerable to traffic fingerprinting attack, which can identify different websites by identifying traffic patterns using statistical features of traffic. Our work shows that traffic fingerprinting attack is also effective for the Bitcoin hidden nodes detection. In this paper, we proposed a novel lightweight Bitcoin hidden service traffic fingerprinting, using a random decision forest classifier with features from TLS packet size and direction. We test our attack on a novel dataset, including a foreground set of Bitcoin hidden node traffic and a background set of different hidden service websites and various Tor applications traffic. We can detect Bitcoin hidden node from different Tor clients and website hidden services with a precision of 0.989 and a recall of 0.987, which is higher than the previous model.
2022-06-07
He, Weiyu, Wu, Xu, Wu, Jingchen, Xie, Xiaqing, Qiu, Lirong, Sun, Lijuan.  2021.  Insider Threat Detection Based on User Historical Behavior and Attention Mechanism. 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). :564–569.
Insider threat makes enterprises or organizations suffer from the loss of property and the negative influence of reputation. User behavior analysis is the mainstream method of insider threat detection, but due to the lack of fine-grained detection and the inability to effectively capture the behavior patterns of individual users, the accuracy and precision of detection are insufficient. To solve this problem, this paper designs an insider threat detection method based on user historical behavior and attention mechanism, including using Long Short Term Memory (LSTM) to extract user behavior sequence information, using Attention-based on user history behavior (ABUHB) learns the differences between different user behaviors, uses Bidirectional-LSTM (Bi-LSTM) to learn the evolution of different user behavior patterns, and finally realizes fine-grained user abnormal behavior detection. To evaluate the effectiveness of this method, experiments are conducted on the CMU-CERT Insider Threat Dataset. The experimental results show that the effectiveness of this method is 3.1% to 6.3% higher than that of other comparative model methods, and it can detect insider threats in different user behaviors with fine granularity.
Meng, Fanzhi, Lu, Peng, Li, Junhao, Hu, Teng, Yin, Mingyong, Lou, Fang.  2021.  GRU and Multi-autoencoder based Insider Threat Detection for Cyber Security. 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). :203–210.
The concealment and confusion nature of insider threat makes it a challenging task for security analysts to identify insider threat from log data. To detect insider threat, we propose a novel gated recurrent unit (GRU) and multi-autoencoder based insider threat detection method, which is an unsupervised anomaly detection method. It takes advantage of the extremely unbalanced characteristic of insider threat data and constructs a normal behavior autoencoder with low reconfiguration error through multi-level filter behavior learning, and identifies the behavior data with high reconfiguration error as abnormal behavior. In order to achieve the high efficiency of calculation and detection, GRU and multi-head attention are introduced into the autoencoder. Use dataset v6.2 of the CERT insider threat as validation data and threat detection recall as evaluation metric. The experimental results show that the effect of the proposed method is obviously better than that of Isolation Forest, LSTM autoencoder and multi-channel autoencoders based insider threat detection methods, and it's an effective insider threat detection technology.
2022-04-26
Pisharody, Sandeep, Bernays, Jonathan, Gadepally, Vijay, Jones, Michael, Kepner, Jeremy, Meiners, Chad, Michaleas, Peter, Tse, Adam, Stetson, Doug.  2021.  Realizing Forward Defense in the Cyber Domain. 2021 IEEE High Performance Extreme Computing Conference (HPEC). :1–7.

With the recognition of cyberspace as an operating domain, concerted effort is now being placed on addressing it in the whole-of-domain manner found in land, sea, undersea, air, and space domains. Among the first steps in this effort is applying the standard supporting concepts of security, defense, and deterrence to the cyber domain. This paper presents an architecture that helps realize forward defense in cyberspace, wherein adversarial actions are repulsed as close to the origin as possible. However, substantial work remains in making the architecture an operational reality including furthering fundamental research cyber science, conducting design trade-off analysis, and developing appropriate public policy frameworks.

Liu, Xutao, Li, Qixiang.  2021.  Asymmetric Analysis of Anti-Terrorist Operations and Demand for Light Weapons under the Condition of Informationization. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :1152–1155.

Asymmetric warfare and anti-terrorist war have become a new style of military struggle in the new century, which will inevitably have an important impact on the military economy of various countries and catalyze the innovation climax of military logistics theory and practice. The war in the information age is the confrontation between systems, and “comprehensive integration” is not only the idea of information war ability construction, but also the idea of deterrence ability construction in the information age. Looking at the local wars under the conditions of modern informationization, it is not difficult to see that the status and role of light weapons and equipment have not decreased, on the contrary, higher demands have been put forward for their combat performance. From a forward-looking perspective, based on our army's preparation and logistics support for future asymmetric operations and anti-terrorist military struggle, this strategic issue is discussed in depth.

Valeriano, Brandon, Jensen, Benjamin.  2021.  Building a National Cyber Strategy: The Process and Implications of the Cyberspace Solarium Commission Report. 2021 13th International Conference on Cyber Conflict (CyCon). :189–214.
Crafting a national cyber strategy is an enormous undertaking. In this article we review the process by which the Cyberspace Solarium Commission generated the Solarium Commission Report, developed the strategy of layered cyber deterrence, and strategized for legislative success in implementing its recommendations. This is an article about the development of a whole-of-nation strategy. Once the production of the strategy of layered cyber deterrence is explained, the article goes on to elaborate on implementation strategies, the challenge of escalation management, and future efforts to ensure that the work of the Solarium Commission becomes entrenched in U.S. national cyber strategy and behavior. We review the work left undone by the Solarium Commission, highlighting the enormous effort that went into the process of building out a strategy to defend a nation.11It takes a village; we thank the entire Solarium Commission team, as their efforts generated the final Commission Report and the legislative successes that followed. In some ways, this article seeks to chronicle the process of building a strategy that was developed through the efforts of hundreds of people. This work reflects the process that we went through to construct the Solarium Commission report, which is particular to our experience; others may have had different recollections of the events under consideration. Brandon Valeriano is also a Senior Fellow at the Cato Institute and a Senior Advisor to the Cyberspace Solarium Commission. Benjamin Jensen is also a Scholar in Residence at American University and the Research Director for the Cyberspace Solarium Commission.
2022-04-21
Kriz, Danielle.  2011.  Cybersecurity principles for industry and government: A useful framework for efforts globally to improve cybersecurity. 2011 Second Worldwide Cybersecurity Summit (WCS). :1–3.
To better inform the public cybersecurity discussion, in January 2011 the Information Technology Industry Council (ITI) developed a comprehensive set of cybersecurity principles for industry and government [1]. ITI's six principles aim to provide a useful and important lens through which any efforts to improve cybersecurity should be viewed.
2022-04-18
Kang, Ji, Sun, Yi, Xie, Hui, Zhu, Xixi, Ding, Zhaoyun.  2021.  Analysis System for Security Situation in Cyberspace Based on Knowledge Graph. 2021 7th International Conference on Big Data and Information Analytics (BigDIA). :385–392.
With the booming of Internet technology, the continuous emergence of new technologies and new algorithms greatly expands the application boundaries of cyberspace. While enjoying the convenience brought by informatization, the society is also facing increasingly severe threats to the security of cyberspace. In cyber security defense, cyberspace operators rely on the discovered vulnerabilities, attack patterns, TTPs, and other knowledge to observe, analyze and determine the current threats to the network and security situation in cyberspace, and then make corresponding decisions. However, most of such open-source knowledge is distributed in different data sources in the form of text or web pages, which is not conducive to the understanding, query and correlation analysis of cyberspace operators. In this paper, a knowledge graph for cyber security is constructed to solve this problem. At first, in the process of obtaining security data from multi-source heterogeneous cyberspaces, we adopt efficient crawler to crawl the required data, paving the way for knowledge graph building. In order to establish the ontology required by the knowledge graph, we abstract the overall framework of security data sources in cyberspace, and depict in detail the correlations among various data sources. Then, based on the \$$\backslash$mathbfOWL +$\backslash$mathbfSWRL\$ language, we construct the cyber security knowledge graph. On this basis, we design an analysis system for situation in cyberspace based on knowledge graph and the Snort intrusion detection system (IDS), and study the rules in Snort. The system integrates and links various public resources from the Internet, including key information such as general platforms, vulnerabilities, weaknesses, attack patterns, tactics, techniques, etc. in real cyberspace, enabling the provision of comprehensive, systematic and rich cyber security knowledge to security researchers and professionals, with the expectation to provide a useful reference for cyber security defense.
2022-04-01
Lanotte, Ruggero, Merro, Massimo, Munteanu, Andrei, Tini, Simone.  2021.  Formal Impact Metrics for Cyber-physical Attacks. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1—16.
Cyber-Physical systems (CPSs) are exposed to cyber- physical attacks, i.e., security breaches in cyberspace that adversely affect the physical processes of the systems.We define two probabilistic metrics to estimate the physical impact of attacks targeting cyber-physical systems formalised in terms of a probabilistic hybrid extension of Hennessy and Regan's Timed Process Language. Our impact metrics estimate the impact of cyber-physical attacks taking into account: (i) the severity of the inflicted damage in a given amount of time, and (ii) the probability that these attacks are actually accomplished, according to the dynamics of the system under attack. In doing so, we pay special attention to stealthy attacks, i. e., attacks that cannot be detected by intrusion detection systems. As further contribution, we show that, under precise conditions, our metrics allow us to estimate the impact of attacks targeting a complex CPS in a compositional way, i.e., in terms of the impact on its sub-systems.
2022-03-10
Ge, Xin.  2021.  Internet of things device recognition method based on natural language processing and text similarity. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :137—140.
Effective identification of Internet of things devices in cyberspace is of great significance to the protection of Cyberspace Security. However, there are a large number of such devices in cyberspace, which can not be identified by the existing methods of identifying IoT devices because of the lack of key information such as manufacturer name and device name in the response message. Their existence brings hidden danger to Cyberspace Security. In order to identify the IoT devices with missing key information in these response messages, this paper proposes an IoT device identification method, IoTCatcher. IoTCatcher uses HTTP response message and the structure and style characteristics of HTML document, and based on natural language processing technology and text similarity technology, classifies and compares the IoT devices whose response message lacks key information, so as to generate their device finger information. This paper proves that the recognition precision of IoTCatcher is 95.29%, and the recall rate is 91.01%. Compared with the existing methods, the overall performance is improved by 38.83%.
2022-03-08
Nazli Choucri, Agarwal Gaurav.  2022.  CyberIR@MIT: Knowledge for Science Policy & Practice.
CyberIR@MIT is a dynamic, interactive ontology-based knowledge system focused on the evolving, diverse & complex interconnections of cyberspace & international relations.
Nazli Choucri.  2016.  Explorations in International Relations.
Explorations in Cyber International Relations (ECIR) is a collaborative research program of Massachusetts Institute of Technology and Harvard University designed to create multi-disciplinary approaches to the emergence of cyberspace in international relations. The purpose is to support policy analysis by combining leading-edge methods in computer science and technology with international law and long-range political and economic inquiry. ECIR is based in MIT Department of Political Science, with participation from Computer Science and Artificial Intelligence Laboratory (CSAIL) and Sloan School of Management. At Harvard, ECIR is based in the Kennedy School Belfer Center for Science and International Affairs, with participation of Berkman Klein Center for Internet & Society at Harvard Law School.
Choucri, Nazli.  2016.  ECIR Final Report. Explorations in International Relations. :1–121.
Abstract In international relations, the traditional approaches to theory and research, practice, and policy were derived from experiences in the 19th and 20th centuries. But cyberspace, shaped by human ingenuity, is a venue for social interaction, an environment for social communication, and an enabler of new mechanisms for power and leverage. Cyberspace creates new condition — problems and opportunities — for which there are no clear precedents in human history. Already we recognize new patterns of conflict and contention, and concepts such as cyberwar, cybersecurity, and cyberattack are in circulation, buttressed by considerable evidence of cyber espionage and cybercrime. The research problem is this: distinct features of cyberspace — such as time, scope, space, permeation, ubiquity, participation and attribution — challenge traditional modes of inquiry in international relations and limit their utility. The interdisciplinary MIT-Harvard ECIR research project explores various facets of cyber international relations, including its implications for power and politics, conflict and war. Our primary mission and principal goal is to increase the capacity of the nation to address the policy challenges of the cyber domain. Our research is intended to influence today’s policy makers with the best thinking about issues and opportunities, and to train tomorrow’s policy makers to be effective in understanding choice and consequence in cyber matters. Accordingly, the ECIR vision is to create an integrated knowledge domain of international relations in the cyber age, that is (a) multidisciplinary, theory-driven, technically and empirically; (b) clarifies threats and opportunities in cyberspace for national security, welfare, and influence;(c) provides analytical tools for understanding and managing transformation and change; and (d) attracts and educates generations of researchers, scholars, and analysts for international relations in the new cyber age.
Choucri, Nazli, Agarwal, Gaurav.  2017.  The Theory of Lateral Pressure: Highlights of Quantification and Empirical Analysis. Oxford Research Encyclopedias, Politics.
The term lateral pressure refers to any tendency (or propensity) of states, firms, and other entities to expand their activities and exert influence and control beyond their established boundaries, whether for economic, political, military, scientific, religious, or other purposes. Framed by Robert C. North and Nazli Choucri, the theory addresses the sources and consequences of such a tendency. This chapter presents the core features—assumptions, logic, core variables, and dynamics—and summarizes the quantitative work undertaken to date. Some aspects of the theory analysis are more readily quantifiable than others. Some are consistent with conventional theory in international relations. Others are based on insights and evidence from other areas of knowledge, thus departing from tradition in potentially significant ways. Initially applied to the causes of war, the theory focuses on the question of: Who does what, when, how, and with what consequences? The causal logic in lateral pressure theory runs from the internal drivers (i.e., the master variables that shape the profiles of states) through the intervening variables (i.e., aggregated and articulated demands given prevailing capabilities), and the outcomes often generate added complexities. To the extent that states expand their activities outside territorial boundaries, driven by a wide range of capabilities and motivations, they are likely to encounter other states similarly engaged. The intersection among spheres of influence is the first step in complex dynamics that lead to hostilities, escalation, and eventually conflict and violence. The quantitative analysis of lateral pressure theory consists of six distinct phases. The first phase began with a large-scale, cross-national, multiple equation econometric investigation of the 45 years leading to World War I, followed by a system of simultaneous equations representing conflict dynamics among competing powers in the post–World War II era. The second phase is a detailed econometric analysis of Japan over the span of more than a century and two World Wars. The third phase of lateral pressure involves system dynamics modeling of growth and expansion of states from 1970s to the end of the 20th century and explores the use of fuzzy logic in this process. The fourth phase focuses on the state-based sources of anthropogenic greenhouse gases to endogenize the natural environment in the study of international relations. The fifth phase presents a detailed ontology of the driving variables shaping lateral pressure and their critical constituents in order to (a) frame their interconnections, (b) capture knowledge on sustainable development, (c) create knowledge management methods for the search, retrieval, and use of knowledge on sustainable development and (d) examine the use of visualization techniques for knowledge display and analysis. The sixth, and most recent, phase of lateral pressure theory and empirical analysis examines the new realities created by the construction of cyberspace and interactions with the traditional international order.
2022-01-11
Li, Xiaolong, Zhao, Tengteng, Zhang, Wei, Gan, Zhiqiang, Liu, Fugang.  2021.  A Visual Analysis Framework of Attack Paths Based on Network Traffic. 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA). :232–237.
With the rapid development of the Internet, cyberspace security has become a potentially huge problem. At the same time, the disclosure of cyberspace vulnerabilities is getting faster and faster. Traditional protection methods based on known features cannot effectively defend against new network attacks. Network attack is no more a single vulnerability exploit, but an APT attack based on multiple complicated methods. Cyberspace attacks have become ``rationalized'' on the surface. Currently, there are a lot of researches about visualization of attack paths, but there is no an overall plan to reproduce the attack path. Most researches focus on the detection and characterization individual based on single behavior cyberspace attacks, which loose it's abilities to help security personnel understand the complete attack behavior of attackers. The key factors of this paper is to collect the attackers' aggressive behavior by reverse retrospective method based on the actual shooting range environment. By finding attack nodes and dividing offensive behavior into time series, we can characterize the attacker's behavior path vividly and comprehensively.
2022-01-10
Hu, Guangjun, Li, Haiwei, Li, Kun, Wang, Rui.  2021.  A Network Asset Detection Scheme Based on Website Icon Intelligent Identification. 2021 Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS). :255–257.
With the rapid development of the Internet and communication technologies, efficient management of cyberspace, safe monitoring and protection of various network assets can effectively improve the overall level of network security protection. Accurate, effective and comprehensive network asset detection is the prerequisite for effective network asset management, and it is also the basis for security monitoring and analysis. This paper proposed an artificial intelligence algorithm based scheme which accurately identify the website icon and help to determine the ownership of network assets. Through experiments based on data set collected from real network, the result demonstrate that the proposed scheme has higher accuracy and lower false alarm rate, and can effectively reduce the training cost.
2021-11-08
Shaukat, Kamran, Luo, Suhuai, Chen, Shan, Liu, Dongxi.  2020.  Cyber Threat Detection Using Machine Learning Techniques: A Performance Evaluation Perspective. 2020 International Conference on Cyber Warfare and Security (ICCWS). :1–6.
The present-day world has become all dependent on cyberspace for every aspect of daily living. The use of cyberspace is rising with each passing day. The world is spending more time on the Internet than ever before. As a result, the risks of cyber threats and cybercrimes are increasing. The term `cyber threat' is referred to as the illegal activity performed using the Internet. Cybercriminals are changing their techniques with time to pass through the wall of protection. Conventional techniques are not capable of detecting zero-day attacks and sophisticated attacks. Thus far, heaps of machine learning techniques have been developed to detect the cybercrimes and battle against cyber threats. The objective of this research work is to present the evaluation of some of the widely used machine learning techniques used to detect some of the most threatening cyber threats to the cyberspace. Three primary machine learning techniques are mainly investigated, including deep belief network, decision tree and support vector machine. We have presented a brief exploration to gauge the performance of these machine learning techniques in the spam detection, intrusion detection and malware detection based on frequently used and benchmark datasets.
2021-10-12
Onu, Emmanuel, Mireku Kwakye, Michael, Barker, Ken.  2020.  Contextual Privacy Policy Modeling in IoT. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :94–102.
The Internet of Things (IoT) has been one of the biggest revelations of the last decade. These cyber-physical systems seamlessly integrate and improve the activities in our daily lives. Hence, creating a wide application for it in several domains, such as smart buildings and cities. However, the integration of IoT also comes with privacy challenges. The privacy challenges result from the ability of these devices to pervasively collect personal data about individuals through sensors in ways that could be unknown to them. A number of research efforts have evaluated privacy policy awareness and enforcement as key components for addressing these privacy challenges. This paper provides a framework for understanding contextualized privacy policy within the IoT domain. This will enable IoT privacy researchers to better understand IoT privacy policies and their modeling.
Sun, Yizhen, Lin, Dandan, Song, Hong, Yan, Minjia, Cao, Linjing.  2020.  A Method to Construct Vulnerability Knowledge Graph Based on Heterogeneous Data. 2020 16th International Conference on Mobility, Sensing and Networking (MSN). :740–745.
In recent years, there are more and more attacks and exploitation aiming at network security vulnerabilities. It is effective for us to prevent criminals from exploiting vulnerabilities for attacks and help security analysts maintain equipment security that knows vulnerabilities and threats on time. With the knowledge graph, we can organize, manage, and utilize the massive information effectively in cyberspace. In this paper we construct the vulnerability ontology after analyzing multi-source heterogeneous databases. And the vulnerability knowledge graph is established. Experimental results show that the accuracy of entity recognition for extracting vendor names reaches 89.76%. The more rules used in entity recognition, the higher the accuracy and the lower the error rate.
2021-07-28
Aigner, Andreas, Khelil, Abdelmajid.  2020.  A Semantic Model-Based Security Engineering Framework for Cyber-Physical Systems. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1826—1833.
The coupling of safety-relevant embedded- and cyber-space components to build Cyber-Physical Systems (CPS) extends the functionality and quality in many business domains, while also creating new ones. Prime examples like Internet of Things and Industry 4.0 enable new technologies and extend the service capabilities of physical entities by building a universe of connected devices. In addition to higher complexity, the coupling of these heterogeneous systems results in many new challenges, which should be addressed by engineers and administrators. Here, security represents a major challenge, which may be well addressed in cyber-space engineering, but less in embedded system or CPS design. Although model-based engineering provides significant benefits for system architects, like reducing complexity and automated analysis, as well as being considered as standard methodology in embedded systems design, the aspect of security may not have had a major role in traditional engineering concepts. Especially the characteristics of CPS, as well as the coupling of safety-relevant (physical) components with high-scalable entities of the cyber-space domain have an enormous impact on the overall level of security, based on the introduced side effects and uncertainties. Therefore, we aim to define a model-based security-engineering framework, which is tailored to the needs of CPS engineers. Hereby, we focus on the actual modeling process, the evaluation of security, as well as quantitatively expressing security of a deployed CPS. Overall and in contrast to other approaches, we shift the engineering concepts on a semantic level, which allows to address the proposed challenges in CPS in the most efficient way.
2021-05-13
Nie, Guanglai, Zhang, Zheng, Zhao, Yufeng.  2020.  The Executors Scheduling Algorithm for the Web Server Based on the Attack Surface. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :281–287.
In the existing scheduling algorithms of mimicry structure, the random algorithm cannot solve the problem of large vulnerability window in the process of random scheduling. Based on known vulnerabilities, the algorithm with diversity and complexity as scheduling indicators can not only fail to meet the characteristic requirements of mimic's endogenous security for defense, but also cannot analyze the unknown vulnerabilities and measure the continuous differences in time of mimic Executive Entity. In this paper, from the Angle of attack surface is put forward based on mimicry attack the mimic Executive Entity scheduling algorithm, its resources to measure analysis method and mimic security has intrinsic consistency, avoids the random algorithm to vulnerability and modeling using known vulnerabilities targeted, on time at the same time can ensure the diversity of the Executive body, to mimic the attack surface web server scheduling system in continuous time is less, and able to form a continuous differences. Experiments show that the minimum symbiotic resource scheduling algorithm based on time continuity is more secure than the random scheduling algorithm.
2021-04-27
Aigner, A., Khelil, A..  2020.  A Benchmark of Security Metrics in Cyber-Physical Systems. 2020 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops). :1—6.

The usage of connected devices and their role within our daily- and business life gains more and more impact. In addition, various derivations of Cyber-Physical Systems (CPS) reach new business fields, like smart healthcare or Industry 4.0. Although these systems do bring many advantages for users by extending the overall functionality of existing systems, they come with several challenges, especially for system engineers and architects. One key challenge consists in achieving a sufficiently high level of security within the CPS environment, as sensitive data or safety-critical functions are often integral parts of CPS. Being system of systems (SoS), CPS complexity, unpredictability and heterogeneity complicate analyzing the overall level of security, as well as providing a way to detect ongoing attacks. Usually, security metrics and frameworks provide an effective tool to measure the level of security of a given component or system. Although several comprehensive surveys exist, an assessment of the effectiveness of the existing solutions for CPS environments is insufficiently investigated in literature. In this work, we address this gap by benchmarking a carefully selected variety of existing security metrics in terms of their usability for CPS. Accordingly, we pinpoint critical CPS challenges and qualitatively assess the effectiveness of the existing metrics for CPS systems.

2021-02-08
Aigner, A., Khelil, A..  2020.  A Security Qualification Matrix to Efficiently Measure Security in Cyber-Physical Systems. 2020 32nd International Conference on Microelectronics (ICM). :1–4.

Implementations of Cyber-Physical Systems (CPS), like the Internet of Things, Smart Factories or Smart Grid gain more and more impact in their fields of application, as they extend the functionality and quality of the offered services significantly. However, the coupling of safety-critical embedded systems and services of the cyber-space domain introduce many new challenges for system engineers. Especially, the goal to achieve a high level of security throughout CPS presents a major challenge. However, it is necessary to develop and deploy secure CPS, as vulnerabilities and threats may lead to a non- or maliciously modified functionality of the CPS. This could ultimately cause harm to life of involved actors, or at least sensitive information can be leaked or lost. Therefore, it is essential that system engineers are aware of the level of security of the deployed CPS. For this purpose, security metrics and security evaluation frameworks can be utilized, as they are able to quantitatively express security, based on different measurements and rules. However, existing security scoring solutions may not be able to generate accurate security scores for CPS, as they insufficiently consider the typical CPS characteristics, like the communication of heterogeneous systems of physical- and cyber-space domain in an unpredictable manner. Therefore, we propose a security analysis framework, called Security Qualification Matrix (SQM). The SQM is capable to analyses multiple attacks on a System-of-Systems level simultaneously. With this approach, dependencies, potential side effects and the impact of mitigation concepts can quickly be identified and evaluated.

2020-09-04
Song, Chengru, Xu, Changqiao, Yang, Shujie, Zhou, Zan, Gong, Changhui.  2019.  A Black-Box Approach to Generate Adversarial Examples Against Deep Neural Networks for High Dimensional Input. 2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC). :473—479.
Generating adversarial samples is gathering much attention as an intuitive approach to evaluate the robustness of learning models. Extensive recent works have demonstrated that numerous advanced image classifiers are defenseless to adversarial perturbations in the white-box setting. However, the white-box setting assumes attackers to have prior knowledge of model parameters, which are generally inaccessible in real world cases. In this paper, we concentrate on the hard-label black-box setting where attackers can only pose queries to probe the model parameters responsible for classifying different images. Therefore, the issue is converted into minimizing non-continuous function. A black-box approach is proposed to address both massive queries and the non-continuous step function problem by applying a combination of a linear fine-grained search, Fibonacci search, and a zeroth order optimization algorithm. However, the input dimension of a image is so high that the estimation of gradient is noisy. Hence, we adopt a zeroth-order optimization method in high dimensions. The approach converts calculation of gradient into a linear regression model and extracts dimensions that are more significant. Experimental results illustrate that our approach can relatively reduce the amount of queries and effectively accelerate convergence of the optimization method.