Biblio
The next generation of dependable embedded systems feature autonomy and higher levels of interconnection. Autonomy is commonly achieved with the support of artificial intelligence algorithms that pose high computing demands on the hardware platform, reaching a high performance scale. This involves a dramatic increase in software and hardware complexity, fact that together with the novelty of the technology, raises serious concerns regarding system dependability. Traditional approaches for certification require to demonstrate that the system will be acceptably safe to operate before it is deployed into service. The nature of autonomous systems, with potentially infinite scenarios, configurations and unanticipated interactions, makes it increasingly difficult to support such claim at design time. In this context, the extended networking technologies can be exploited to collect post-deployment evidence that serve to oversee whether safety assumptions are preserved during operation and to continuously improve the system through regular software updates. These software updates are not only convenient for critical bug fixing but also necessary for keeping the interconnected system resilient against security threats. However, such approach requires a recondition of the traditional certification practices.
One of the latest emerging technologies is artificial intelligence, which makes the machine mimic human behavior. The most important component used to detect cyber attacks or malicious activities is the Intrusion Detection System (IDS). Artificial intelligence plays a vital role in detecting intrusions and widely considered as the better way in adapting and building IDS. In trendy days, artificial intelligence algorithms are rising as a brand new computing technique which will be applied to actual time issues. In modern days, neural network algorithms are emerging as a new artificial intelligence technique that can be applied to real-time problems. The proposed system is to detect a classification of botnet attack which poses a serious threat to financial sectors and banking services. The proposed system is created by applying artificial intelligence on a realistic cyber defense dataset (CSE-CIC-IDS2018), the very latest Intrusion Detection Dataset created in 2018 by Canadian Institute for Cybersecurity (CIC) on AWS (Amazon Web Services). The proposed system of Artificial Neural Networks provides an outstanding performance of Accuracy score is 99.97% and an average area under ROC (Receiver Operator Characteristic) curve is 0.999 and an average False Positive rate is a mere value of 0.001. The proposed system using artificial intelligence of botnet attack detection is powerful, more accurate and precise. The novel proposed system can be implemented in n machines to conventional network traffic analysis, cyber-physical system traffic data and also to the real-time network traffic analysis.