Visible to the public Biblio

Filters: Keyword is CSE-CIC-IDS2018  [Clear All Filters]
2023-06-23
Guarino, Idio, Bovenzi, Giampaolo, Di Monda, Davide, Aceto, Giuseppe, Ciuonzo, Domenico, Pescapè, Antonio.  2022.  On the use of Machine Learning Approaches for the Early Classification in Network Intrusion Detection. 2022 IEEE International Symposium on Measurements & Networking (M&N). :1–6.
Current intrusion detection techniques cannot keep up with the increasing amount and complexity of cyber attacks. In fact, most of the traffic is encrypted and does not allow to apply deep packet inspection approaches. In recent years, Machine Learning techniques have been proposed for post-mortem detection of network attacks, and many datasets have been shared by research groups and organizations for training and validation. Differently from the vast related literature, in this paper we propose an early classification approach conducted on CSE-CIC-IDS2018 dataset, which contains both benign and malicious traffic, for the detection of malicious attacks before they could damage an organization. To this aim, we investigated a different set of features, and the sensitivity of performance of five classification algorithms to the number of observed packets. Results show that ML approaches relying on ten packets provide satisfactory results.
ISSN: 2639-5061
2022-06-14
Hancock, John, Khoshgoftaar, Taghi M., Leevy, Joffrey L..  2021.  Detecting SSH and FTP Brute Force Attacks in Big Data. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). :760–765.
We present a simple approach for detecting brute force attacks in the CSE-CIC-IDS2018 Big Data dataset. We show our approach is preferable to more complex approaches since it is simpler, and yields stronger classification performance. Our contribution is to show that it is possible to train and test simple Decision Tree models with two independent variables to classify CSE-CIC-IDS2018 data with better results than reported in previous research, where more complex Deep Learning models are employed. Moreover, we show that Decision Tree models trained on data with two independent variables perform similarly to Decision Tree models trained on a larger number independent variables. Our experiments reveal that simple models, with AUC and AUPRC scores greater than 0.99, are capable of detecting brute force attacks in CSE-CIC-IDS2018. To the best of our knowledge, these are the strongest performance metrics published for the machine learning task of detecting these types of attacks. Furthermore, the simplicity of our approach, combined with its strong performance, makes it an appealing technique.
2020-05-11
Kanimozhi, V., Jacob, T. Prem.  2019.  Artificial Intelligence based Network Intrusion Detection with Hyper-Parameter Optimization Tuning on the Realistic Cyber Dataset CSE-CIC-IDS2018 using Cloud Computing. 2019 International Conference on Communication and Signal Processing (ICCSP). :0033–0036.

One of the latest emerging technologies is artificial intelligence, which makes the machine mimic human behavior. The most important component used to detect cyber attacks or malicious activities is the Intrusion Detection System (IDS). Artificial intelligence plays a vital role in detecting intrusions and widely considered as the better way in adapting and building IDS. In trendy days, artificial intelligence algorithms are rising as a brand new computing technique which will be applied to actual time issues. In modern days, neural network algorithms are emerging as a new artificial intelligence technique that can be applied to real-time problems. The proposed system is to detect a classification of botnet attack which poses a serious threat to financial sectors and banking services. The proposed system is created by applying artificial intelligence on a realistic cyber defense dataset (CSE-CIC-IDS2018), the very latest Intrusion Detection Dataset created in 2018 by Canadian Institute for Cybersecurity (CIC) on AWS (Amazon Web Services). The proposed system of Artificial Neural Networks provides an outstanding performance of Accuracy score is 99.97% and an average area under ROC (Receiver Operator Characteristic) curve is 0.999 and an average False Positive rate is a mere value of 0.001. The proposed system using artificial intelligence of botnet attack detection is powerful, more accurate and precise. The novel proposed system can be implemented in n machines to conventional network traffic analysis, cyber-physical system traffic data and also to the real-time network traffic analysis.