Visible to the public Biblio

Filters: Keyword is file transfers  [Clear All Filters]
2020-12-15
Nasser, B., Rabani, A., Freiling, D., Gan, C..  2018.  An Adaptive Telerobotics Control for Advanced Manufacturing. 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS). :82—89.
This paper explores an innovative approach to the telerobotics reasoning architecture and networking, which offer a reliable and adaptable operational process for complex tasks. There are many operational challenges in the remote control for manufacturing that can be introduced by the network communications and Iatency. A new protocol, named compact Reliable UDP (compact-RUDP), has been developed to combine both data channelling and media streaming for robot teleoperation. The original approach ensures connection reliability by implementing a TCP-like sliding window with UDP packets. The protocol provides multiple features including data security, link status monitoring, bandwidth control, asynchronous file transfer and prioritizing transfer of data packets. Experiments were conducted on a 5DOF robotic arm where a cutting tool was mounted at its distal end. A light sensor was used to guide the robot movements, and a camera device to provide a video stream of the operation. The data communication reliability is evaluated using Round-Trip Time (RTT), and advanced robot path planning for distributed decision making between endpoints. The results show 88% correlation between the remotely and locally operated robots. The file transfers and video streaming were performed with no data loss or corruption on the control commands and data feedback packets.
2020-05-11
Üzüm, İbrahim, Can, Özgü.  2018.  An anomaly detection approach for enterprise file integration. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1–4.
An information system based on real-time file integrations has an important role in today's organizations' work process management. By connecting to the network, file flow and integration between corporate systems have gained a great significance. In addition, network and security issues have emerged depending on the file structure and transfer processes. Thus, there has become a need for an effective and self-learning anomaly detection module for file transfer processes in order to provide the persistence of integration channels, accountability of transfer logs and data integrity. This paper proposes a novel anomaly detection approach that focuses on file size and integration duration of file transfers between enterprise systems. For this purpose, size and time anomalies on transferring files will be detected by a machine learning-based structure. Later, an alarm system is going to be developed in order to inform the authenticated individuals about the anomalies.