Biblio
Filters: Keyword is Optical network units [Clear All Filters]
Full-Duplex Self-Recovery Optical Fibre Transport System Based on a Passive Single-Line Bidirectional Optical Add/Drop Multiplexer. IEEE Photonics Journal. 12:1–10.
.
2020. A full-duplex self-recovery optical fibre transport system is proposed on the basis of a novel passive single-line bidirectional optical add/drop multiplexer (SBOADM). This system aims to achieve an access network with low complexity and network protection capability. Polarisation division multiplexing technique, optical double-frequency application and wavelength reuse method are also employed in the transport system to improve wavelength utilisation efficiency and achieve colourless optical network unit. When the network comprises a hybrid tree-ring topology, the downstream signals can be bidirectionally transmitted and the upstream signals can continuously be sent back to the central office in the reverse pathways due to the remarkable routing function of the SBOADM. Thus, no complicated optical multiplexer/de-multiplexer components or massive optical switches are required in the transport system. If a fibre link failure occurs in the ring topology, then the blocked network connections can be recovered by switching only a single optical switch preinstalled in the remote node. Simulation results show that the proposed architecture can recover the network function effectively and provide identical transmission performance to overcome the impact of a breakpoint in the network. The proposed transport system presents remarkable flexibility and convenience in expandability and breakpoint self-recovery.
Deepfake Video Detection through Optical Flow Based CNN. 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). :1205—1207.
.
2019. Recent advances in visual media technology have led to new tools for processing and, above all, generating multimedia contents. In particular, modern AI-based technologies have provided easy-to-use tools to create extremely realistic manipulated videos. Such synthetic videos, named Deep Fakes, may constitute a serious threat to attack the reputation of public subjects or to address the general opinion on a certain event. According to this, being able to individuate this kind of fake information becomes fundamental. In this work, a new forensic technique able to discern between fake and original video sequences is given; unlike other state-of-the-art methods which resorts at single video frames, we propose the adoption of optical flow fields to exploit possible inter-frame dissimilarities. Such a clue is then used as feature to be learned by CNN classifiers. Preliminary results obtained on FaceForensics++ dataset highlight very promising performances.
Security Testing Of Active Optical Network Devices. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP). :9—13.
.
2019. This article presents results and overview of conducted testing of active optical network devices. The base for the testing is originating in Kali Linux and penetration testing generally. The goal of tests is to either confirm or disprove a vulnerability of devices used in the tested polygon. The first part deals with general overview and topology of testing devices, the next part is dedicated to active and passive exploration and exploits. The last part provides a summary of the results.