Visible to the public Biblio

Filters: Keyword is C4ISR  [Clear All Filters]
2023-02-24
Figueira, Nina, Pochmann, Pablo, Oliveira, Abel, de Freitas, Edison Pignaton.  2022.  A C4ISR Application on the Swarm Drones Context in a Low Infrastructure Scenario. 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1—7.
The military operations in low communications infrastructure scenarios employ flexible solutions to optimize the data processing cycle using situational awareness systems, guaranteeing interoperability and assisting in all processes of decision-making. This paper presents an architecture for the integration of Command, Control, Computing, Communication, Intelligence, Surveillance and Reconnaissance Systems (C4ISR), developed within the scope of the Brazilian Ministry of Defense, in the context of operations with Unmanned Aerial Vehicles (UAV) - swarm drones - and the Internet-to-the-battlefield (IoBT) concept. This solution comprises the following intelligent subsystems embedded in UAV: STFANET, an SDN-Based Topology Management for Flying Ad Hoc Network focusing drone swarms operations, developed by University of Rio Grande do Sul; Interoperability of Command and Control (INTERC2), an intelligent communication middleware developed by Brazilian Navy; A Mission-Oriented Sensors Array (MOSA), which provides the automatization of data acquisition, data fusion, and data sharing, developed by Brazilian Army; The In-Flight Awareness Augmentation System (IFA2S), which was developed to increase the safety navigation of Unmanned Aerial Vehicles (UAV), developed by Brazilian Air Force; Data Mining Techniques to optimize the MOSA with data patterns; and an adaptive-collaborative system, composed of a Software Defined Radio (SDR), to solve the identification of electromagnetic signals and a Geographical Information System (GIS) to organize the information processed. This research proposes, as a main contribution in this conceptual phase, an application that describes the premises for increasing the capacity of sensing threats in the low structured zones, such as the Amazon rainforest, using existing communications solutions of Brazilian defense monitoring systems.
2020-05-15
Chekired, Djabir Abdeldjalil, Khoukhi, Lyes.  2019.  Distributed SDN-Based C4ISR Communications: A Delay-Tolerant Network for Trusted Tactical Cloudlets. 2019 International Conference on Military Communications and Information Systems (ICMCIS). :1—7.

The next generation military environment requires a delay-tolerant network for sharing data and resources using an interoperable computerized, Command, Control, Communications, Intelligence, Surveillance and Reconnaissance (C4ISR) infrastructure. In this paper, we propose a new distributed SDN (Software-Defined Networks) architecture for tactical environments based on distributed cloudlets. The objective is to reduce the end-to-end delay of tactical traffic flow, and improve management capabilities, allowing flexible control and network resource allocation. The proposed SDN architecture is implemented over three layers: decentralized cloudlets layer where each cloudlet has its SDRN (Software-Defined Radio Networking) controller, decentralized MEC (Mobile Edge Computing) layer with an SDN controller for each MEC, and a centralized private cloud as a trusted third-part authority controlled by a centralized SDN controller. The experimental validations are done via relevant and realistic tactical scenarios based on strategic traffics loads, i.e., Tactical SMS (Short Message Service), UVs (Unmanned Vehicle) patrol deployment and high bite rate ISR (Intelligence, Surveillance, and Reconnaissance) video.