Biblio
Cross-Site Scripting (XSS) is an attack most often carried out by attackers to attack a website by inserting malicious scripts into a website. This attack will take the user to a webpage that has been specifically designed to retrieve user sessions and cookies. Nearly 68% of websites are vulnerable to XSS attacks. In this study, the authors conducted a study by evaluating several machine learning methods, namely Support Vector Machine (SVM), K-Nearest Neighbour (KNN), and Naïve Bayes (NB). The machine learning algorithm is then equipped with the n-gram method to each script feature to improve the detection performance of XSS attacks. The simulation results show that the SVM and n-gram method achieves the highest accuracy with 98%.
Classifying malware programs is a research area attracting great interest for Anti-Malware industry. In this research, we propose a system that visualizes malware programs as images and distinguishes those using Convolutional Neural Networks (CNNs). We study the performance of several well-established CNN based algorithms such as AlexNet, ResNet and VGG16 using transfer learning approaches. We also propose a computationally efficient CNN-based architecture for classification of malware programs. In addition, we study the performance of these CNNs as feature extractors by using Support Vector Machine (SVM) and K-nearest Neighbors (kNN) for classification purposes. We also propose fusion methods to boost the performance further. We make use of the publicly available database provided by Microsoft Malware Classification Challenge (BIG 2015) for this study. Our overall performance is 99.4% for a set of 2174 test samples comprising 9 different classes thereby setting a new benchmark.
Automatic emotion recognition using computer vision is significant for many real-world applications like photojournalism, virtual reality, sign language recognition, and Human Robot Interaction (HRI) etc., Psychological research findings advocate that humans depend on the collective visual conduits of face and body to comprehend human emotional behaviour. Plethora of studies have been done to analyse human emotions using facial expressions, EEG signals and speech etc., Most of the work done was based on single modality. Our objective is to efficiently integrate emotions recognized from facial expressions and upper body pose of humans using images. Our work on bimodal emotion recognition provides the benefits of the accuracy of both the modalities.
Malware is one of the threats to information security that continues to increase. In 2014 nearly six million new malware was recorded. The highest number of malware is in Trojan Horse malware while in Adware malware is the most significantly increased malware. Security system devices such as antivirus, firewall, and IDS signature-based are considered to fail to detect malware. This happens because of the very fast spread of computer malware and the increasing number of signatures. Besides signature-based security systems it is difficult to identify new methods, viruses or worms used by attackers. One other alternative in detecting malware is to use honeypot with machine learning. Honeypot can be used as a trap for packages that are suspected while machine learning can detect malware by classifying classes. Decision Tree and Support Vector Machine (SVM) are used as classification algorithms. In this paper, we propose architectural design as a solution to detect malware. We presented the architectural proposal and explained the experimental method to be used.
The rapid rise of cyber-crime activities and the growing number of devices threatened by them place software security issues in the spotlight. As around 90% of all attacks exploit known types of security issues, finding vulnerable components and applying existing mitigation techniques is a viable practical approach for fighting against cyber-crime. In this paper, we investigate how the state-of-the-art machine learning techniques, including a popular deep learning algorithm, perform in predicting functions with possible security vulnerabilities in JavaScript programs. We applied 8 machine learning algorithms to build prediction models using a new dataset constructed for this research from the vulnerability information in public databases of the Node Security Project and the Snyk platform, and code fixing patches from GitHub. We used static source code metrics as predictors and an extensive grid-search algorithm to find the best performing models. We also examined the effect of various re-sampling strategies to handle the imbalanced nature of the dataset. The best performing algorithm was KNN, which created a model for the prediction of vulnerable functions with an F-measure of 0.76 (0.91 precision and 0.66 recall). Moreover, deep learning, tree and forest based classifiers, and SVM were competitive with F-measures over 0.70. Although the F-measures did not vary significantly with the re-sampling strategies, the distribution of precision and recall did change. No re-sampling seemed to produce models preferring high precision, while re-sampling strategies balanced the IR measures.
As the Internet technology develops rapidly, attacks against Tor networks becomes more and more frequent. So, it's more and more difficult for Tor network to meet people's demand to protect their private information. A method to improve the anonymity of Tor seems urgent. In this paper, we mainly talk about the principle of Tor, which is the largest anonymous communication system in the world, analyze the reason for its limited efficiency, and discuss the vulnerability of link fingerprint and node selection. After that, a node recognition model based on SVM is established, which verifies that the traffic characteristics expose the node attributes, thus revealing the link and destroying the anonymity. Based on what is done above, some measures are put forward to improve Tor protocol to make it more anonymous.