Biblio
Filters: Keyword is Network on Chip (NoC) [Clear All Filters]
A Study on the Effect of Hardware Trojans in the Performance of Network on Chip Architectures. 2021 8th International Conference on Smart Computing and Communications (ICSCC). :314—318.
.
2021. Network on chip (NoC) is the communication infrastructure used in multicores which has been subject to a surfeit of security threats like degrading the system performance, changing the system functionality or leaking sensitive information. Because of the globalization of the advanced semiconductor industry, many third-party venders take part in the hardware design of system. As a result, a malicious circuit, called Hardware Trojans (HT) can be added anywhere into the NoC design and thus making the hardware untrusted. In this paper, a detailed study on the taxonomy of hardware trojans, its detection and prevention mechanisms are presented. Two case studies on HT-assisted Denial of service attacks and its analysis in the performance of network on Chip architecture is also presented in this paper.
Detecting and Mitigating Low-and-Slow DoS Attacks in NoC-based MPSoCs. 2019 14th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC). :82—89.
.
2019. As Multi-Processor Systems-on-Chip (MPSoCs) permeate the Internet by powering IoT devices, they are exposed to new threats. One major threat is Denial-of-Service (DoS) attacks, which make communication services slow or even unavailable. While mainly studied on desktop and server systems, some DoS attacks on mobile devices and Network-on-Chip (NoC) platforms have also been considered. In the context of NoC-based MPSoC architectures, previous works have explored flooding DoS attacks and their countermeasures, however, these protection techniques are ineffective to mitigate new DoS attacks. Recently, a shift of the network attack paradigm from flooding DoS to Low-and-Slow DoS has been observed. To this end, we present two contributions. First, we demonstrate, for the first time, the impact of Low-and-Slow DoS attacks in NoC environments. Second, we propose a lightweight online monitor able to detect and mitigate these attacks. Results show that our countermeasure is feasible and that it effectively mitigates this new attack. Moreover, since the monitors are placed at the entry points of the network, both, single- and multi-source attacks can be neutralized.