Visible to the public Biblio

Filters: Keyword is space  [Clear All Filters]
2021-11-08
Liu, Qian, de Simone, Robert, Chen, Xiaohong, Kang, Jiexiang, Liu, Jing, Yin, Wei, Wang, Hui.  2020.  Multiform Logical Time Amp; Space for Mobile Cyber-Physical System With Automated Driving Assistance System. 2020 27th Asia-Pacific Software Engineering Conference (APSEC). :415–424.
We study the use of Multiform Logical Time, as embodied in Esterel/SyncCharts and Clock Constraint Specification Language (CCSL), for the specification of assume-guarantee constraints providing safe driving rules related to time and space, in the context of Automated Driving Assistance Systems (ADAS). The main novelty lies in the use of logical clocks to represent the epochs of specific area encounters (when particular area trajectories just start overlapping for instance), thereby combining time and space constraints by CCSL to build safe driving rules specification. We propose the safe specification pattern at high-level that provide the required expressiveness for safe driving rules specification. In the pattern, multiform logical time provides the power of parameterization to express safe driving rules, before instantiation in further simulation contexts. We present an efficient way to irregularly update the constraints in the specification due to the context changes, where elements (other cars, road sections, traffic signs) may dynamically enter and exit the scene. In this way, we add constraints for the new elements and remove the constraints related to the disappearing elements rather than rebuild everything. The multi-lane highway scenario is used to illustrate how to irregularly and efficiently update the constraints in the specification while receiving a fresh scene.
2020-05-18
Panahandeh, Mahnaz, Ghanbari, Shirin.  2019.  Correction of Spaces in Persian Sentences for Tokenization. 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI). :670–674.
The exponential growth of the Internet and its users and the emergence of Web 2.0 have caused a large volume of textual data to be created. Automatic analysis of such data can be used in making decisions. As online text is created by different producers with different styles of writing, pre-processing is a necessity prior to any processes related to natural language tasks. An essential part of textual preprocessing prior to the recognition of the word vocabulary is normalization, which includes the correction of spaces that particularly in the Persian language this includes both full-spaces between words and half-spaces. Through the review of user comments within social media services, it can be seen that in many cases users do not adhere to grammatical rules of inserting both forms of spaces, which increases the complexity of the identification of words and henceforth, reducing the accuracy of further processing on the text. In this study, current issues in the normalization and tokenization of preprocessing tools within the Persian language and essentially identifying and correcting the separation of words are and the correction of spaces are proposed. The results obtained and compared to leading preprocessing tools highlight the significance of the proposed methodology.