Biblio
This article shows the analogy between natural language texts and quantum-like systems on the example of the Bell test calculating. The applicability of the well-known Bell test for texts in Russian is investigated. The possibility of using this test for the text separation on the topics corresponding to the user query in information retrieval system is shown.
Social media has been one of the most efficacious and precise by speakers of public opinion. A strategy which sanctions the utilization and illustration of twitter data to conclude public conviction is discussed in this paper. Sentiments on exclusive entities with diverse strengths and intenseness are stated by public, where these sentiments are strenuously cognate to their personal mood and emotions. To examine the sentiments from natural language texts, addressing various opinions, a lot of methods and lexical resources have been propounded. A path for boosting twitter sentiment classification using various sentiment proportions as meta-level features has been proposed by this article. Analysis of tweets was done on the product iPhone 6.